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Motivation

Let R be a (commutative and unitary) ring, the algebra
S = R[x ]/(xd − α) has shown to be (algorithmically) very useful:

Low complexity normal basis [GL92];
Primality proving [AKS04];
Discrete Logarithm computations in Finite Fields [JL06];
Fast polynomial factorization and composition [KU08].

But, often, there is no primitive d-th root of unity in R
(and embedding the ring R into an auxiliary extension R ′ yields important
losses of efficiency).

Idea: substitute to S one elliptic curve E defined on R, having a
point T ∈ E (R) of exact order d .

Joint works with J.-M. Couveignes, C. Dunand, T. Ezome.
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Classical Method

A classical approach:
Choosing a random polynomial of degree d .
Testing for its irreducibility.

Complexity:
The probability that a polynomial of degree d be irreducible is at
least 1/(2d) [LN83, Ex. 3.26 and 3.27, page 142]
Ben-Or’s irreducibility test [BO81], this test has average
complexity (log q)1+o(1) × d1+o(1) elementary operations

A total of (log q)2+o(1) × d2+o(1) elementary operations.



Another approach [CL09b]

Difficult to improve things as long as we use an irreducibility test.
We are thus driven to consider very particular polynomials.

Adleman and Lenstra [AL86] construct such irreducible polynomials
(thanks to Gauss periods),

with (now) complexity quasi-linear in d ,
but only when d = `δ with ` a prime divisor of p(q − 1).

We mimic their construction using isogenies between elliptic curves,
with still complexity quasi-linear in d ,
but d = `δ is coprime to p (q − 1).

A total complexity of d1+o(1) × (log q)5+o(1).



Artin-Schreier towers : d = pδ [LdS08]
For every k ∈ N∗, le Ak ⊂ Fp be the subset of a’s in Fp s.t.

1 a generates Fpk over Fp, i.e. Fp(a) = Fpk ,
2 a has non-zero absolute trace, i.e. Tr a 6= 0,
3 a−1 has non-zero absolute trace, i.e. Tr a−1 6= 0.

Especially, A1 = F∗p.

Let now I be the map

I : Fp \ Fp → Fp \ {0}
X 7→ (Xp − 1)/(X + X 2 + · · ·+ Xp−1)

We check that
I−1(Ak) ⊂ Apk ,
I−δ(1) is a degree pδ irreducible divisor over Fp.



Examples

If p = 2, d = 2:

Compute I(x) =
x2 + 1

x ;

f (x) = x2 + 1− x .

If p = 2, d = 4:

Compute (I ◦ I)(x) =
x4 + x2 + 1

x3 + x ;

f (x) = x4 + x2 + 1− (x3 + x).

Both are irreducible polynomials in F2[x ].



Radicial extensions : d = `δ with `|p − 1

If ` = 2, we ask that 4|p − 1.

First, look for a generator a of the `-Sylow subgroup of F∗p.
Pick random α in F∗p until a = α(p−1)/`e 6= 1.
The probability of success is about 1.

Then the polynomial f (x) = xd − a is irreducible in Fp[x ].

Proof.
The `δ+e-torsion Gm[`δ+e] of Gm is isomorphic to (Z/`δ+eZ,+)

The Frobenius ϕq : Gm → Gm acts on it as mult. by q.
The order of q = 1 + `′`e in (Z/`e+δZ)∗ is `δ = d .
So the Frobenius Φq acts transitively on the roots of f (x).



Example

We take p = 5, ` = 2, δ = 3 and d = 8.

We check that 4 divides p − 1.

In particular e = 2 and `′ = 1.

The class a = 2 mod 5 generates the 2-Sylow subgroup of (Z/5Z)∗.

(24 = 1 mod 5 and 22 = −1 mod 5).

We set f (x) = x8 − 2.



Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over Fp.

Assume E (Fp) contains a cyclic subgroup T of order d .

Let I : E → E ′ be the degree d cyclic isogeny with kernel T

Take a in E ′(Fp) of order d .

Consider the fibre I−1(a) =
∑

T∈T [b + t].

I−1(a) =
∑

T∈T [b + t] ⊂ E (Fpd )
I

��
d

T = 〈t〉 ⊂ E (Fp)
I ..
E ′(Fp) 3 a



Irreducibility conditions
We factor p + 1− t = dd ′ where d ′ is coprime to d .

There exists two integers λ and µ such that

X 2 − tX + q = (X − λ)(X − µ) mod d2 ,
λ = 1 mod d , µ = q mod d .

Remember I(b) = a, then b is a d2-torsion point, and

ϕ(b) = λb (where ϕ is the Frobenius map) .

The order of λ = 1 + dλ′ mod d2 is equal to d .
Thus the Galois orbit of b has cardinality d
And the d geometric points b + t above a are defined on a degree
d extension Fqd of Fp (and permuted by Galois action).

Fqd is the residue extension of Fp(E ) at P =
∑

T∈T [b + T ].



Example
We take p = 7, q = 7 and d = 5.
The elliptic curve E/F7 : y2 = x3 + x + 4 has got 10 F7-rational points.
The point t = (6, 4) has order ` = 5 and

〈t〉 = {OE , (6, 4), (4, 4), (4, 3), (6, 3)} .

The quotient by 〈t〉 isogenous curve E ′, given by Vélu’s formulae, is

E ′ : y ′2 = x ′3 + 3 x ′ + 4.

where, x ′ in terms of x alone,

x ′ = x +
x + 2

(x + 1)2
+

1
(x + 3)2

=
x5 + x4 + 2 x3 + 5 x2 + 4 x + 5

(x + 3)2 (x + 1)2
.

We choose a = (1, 1) in E ′(F7) and finally obtain,

fa(x) = x5 + x4 + 2 x3 + 5 x2 + 4 x + 5− 1 (x + 3)2 (x + 1)2

= x5 + x3 + 4 x2 + x + 3 .



Irreducible polynomials of degree d = `δ

Algorithm for 4` 6 q 1
4 and any δ :

Pick a random elliptic curve E over K and compute its cardinality
using Schoof’s algorithm ((log q)5+o(1) elem. ops).
Repeat until the cardinality of E is divisible by ` (by a result of
Howe, the average number of trials is O(`)).
Compute a chain of δ quotient isogenies of degree ` from E with
Vélu’s formulas (d1+o(1) × `1+o(1) × (log q)2+o(1) elem. ops).
Compose these isogenies with Kedlaya-Umans’ algorithm
(d1+o(1) × (log q)1+o(1) elem. ops).

A total of `× (log q)5+o(1) + d1+o(1) × (log q)2+o(1) elem. ops.



Base change
Now, assume 4` > q 1

4 , we have to base change to aux. extensions.

L[α]/(F (α)) ' FQd

WWWWWW

K(Σk(α)) ' Fqd

L = K[β]/(ρ(β)) ' FQ

WWWWWWWWW

K ' Fq

1 Find a degree r ' (log `) irreducible polynomial ρ(β) ∈ K[β]
(negligible cost);

2 Obtain an irreducible polynomial F (x) of degree d in L̃[x ], in time
(log q)5+o(1)d1+o(1) elem. ops;

3 There exists a symmetric function Σk such that the polynomial

f (x) =
∏

06l<d
(x − Φl

q(Σk(α))) ∈ K[x ] is irreducible of degree d .



Some technicalities

Three questions to be considered.

1 How to compute Σk(α) and its conjugates ?
α = x(b) where b is a geometric point of order `e+δ in E (L), so

∃λ s.t. ϕE (b) = λb (ϕE is the degree Q Frobenius of E/L)

2 How to find the good integer k ?
Compute the conjugates of α and form the pol. with these roots.
Σk(α) generates the degree d extension of K iff
Φ`δ−1

q (Σk(α)) 6= Σk(α) , that is Σk(Φ`δ−1

q (α)) 6= Σk(α) .

3 How to compute f (x) ∈ K[x ] ?
Compute the minimal pol.of Σk(α), with Kedlaya-Umans algorithm.

A total of d1+o(1) × (log q)2+o(1) elem. ops



Compositum

The last problem to be considered is the following.

Given 2 irreducible polynomials f1(x) and f2(x) with coprime
degrees d1 and d2, construct a deg. d1d2 irreducible polynomial.

This is a classical result.
Let α1 be a root of f1(x) and α2 be a root of f2(x), then α1 + α2
generates an extension of degree d1d2 of Fq.

The minimal polynomial of α1 + α2, called composed sum in a
work of Bostan, Flajolet, Salvy and Schost, can be computed in
quasi-linear time complexity in d1d2.

A total of (d1d2)1+o(1) × (log q)1+o(1) elem. ops.



(Special) Irreducible polynomials over finite fields

Theorem
There exists an algorithm that on input a finite field Fq, and a positive
integer d, returns a degree d irreducible polynomial in Fq[X ].The
algorithm requires d1+o(1) × (log q)5+o(1) elementary operations.

Remarks.
We consider very particular polynomials (derived from points on
elliptic curves).
Some special cases ` = 2, 3 have to be handled in specific ways.



(Random) Irreducible polynomials over finite fields

Given a special irreducible polynomial f (x) of degree d , one can
compute a random irreducible polynomial g(x) of degree d with only
d1+o(1) × (log q)1+o(1) elementary operations.

Choose a random element a in L = K[x ]/(f (x))
(generates L with probability greater than 1− q

q−1 (q− d
2 − q−d) > 1/2);

Compute the minimal polynomial of the element a
(at the expense of d1+o(1)(log q)1+o(1) with Kedlaya-Umans’ algorithm);
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Normal basis

Given a finite field Fq, and an integer d , how can we construct Fqd s.t.
the addition, the multiplication and qth power are fast operations,

at most Õ(d log q) elementary operations ?

A first remark: Since Fqd is a Fq-vector space of dim. d ,
it is “natural” to represent elements as vectors over Fq,

~α = (αi)i∈Z/dZ,

and addition is obviously fast.

But how about about multiplications and Frobenius maps ?



Ingredient 1: Residue fields of divisors on elliptic curves
(again)

I−1(a) =
∑

T∈T [b + t] ⊂ E (Fpd )
I

��
d

T = 〈t〉 ⊂ E (Fp)
I ..
E ′(Fp) 3 a

Again, under some mild condition, φ(b)− b is a generator of T and the
d geometric points above a are defined on a degree d extension Fqd of
Fq (and permuted by Galois action).

Fqd is the residue extension of Fq(E ) at P.



Ingredient 2 : simple functions

Let E/Fq be an elliptic curve given by

Y 2Z + a1XYZ + a3YZ 2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3 .

If A, B and C are three pairwise distinct points in E (Fq), we define

Γ(A,B,C) =
y(C − A)− y(A− B)

x(C − A)− x(A− B)
.

We define a function uA,B ∈ Fq(E ) by uA,B(C) = Γ(A,B,C).

It has degree two with two simple poles, at A and B.



Elliptic Normal Basis

Coming back to the functions uAB, we choose for A and B “consecutive
points” in T .

For k ∈ Z/dZ, we more precisely set

uk = aukt,(k+1)t + b

(a and b, constants chosen such that
∑

uk = 1),

and we evaluate the uk ’s at b.

Lemma (A normal basis)
The system Θ = (uk(b))k∈Z/dZ is a Fq normal basis of Fqd .



Θ is a basis
Let λk in Fq such that

∑
k∈Z/dZ λkuk(b) = 0.

Let us consider the function f =
∑

k∈Z/dZ λkuk .

It cancels not only at b, but at b + t with t ∈ T (because f is
defined over Fq).

And f has d poles, the points in T .

Let us assume f 6= 0, then (f ) = (f )0 − (f )∞ with

(f )0 =
∑
t∈T

[b + t] and (f )∞ =
∑
t∈T

[t].

So,
∑

t∈T (b + t)− (t) = d b = 0E . This is impossible ⇒ f = 0.

Taylor expansions at poles show that all λk ’s are equal.

Since
∑

uk = 1, all λk ’s are thus null.



Θ is normal

We have

φ(uk(b)) = uk(φ(b)) ,

= uk(b + t) .

Remember that by def. uk = aukt,(k+1)t + b, and thus

φ(uk(b)) = aukt,(k+1)t(b + t) + b ,

= au(k−1)t,kt(b) + b .

= uk−1(b) .



Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

Γ(A,B,C) = Γ(B,C ,A) = −Γ(B,A,C)− a1
= −Γ(−A,−B,−C)− a1 ,

uA,B + uB,C + uC ,A = Γ(A,B,C)− a1 ,

and

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C ,B)uA,B
+a2 + xA(B) + xA(C) ,

u2A,B = xA + xB − a1uA,B + xA(B) + a2 ,

where
τA : E → E denotes the translation by A,
and in Fq(E ), xA = x ◦ τ−A and yA = y ◦ τ−A.



A fast multiplication algorithm

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C ,B)uA,B
+a2 + xA(B) + xA(C) ,

u2A,B = xA + xB − a1uA,B + xA(B) + a2 .

This yields a multiplication tensor for Θ with quasi-linear complexity,

~α× ~β = (a2−→ι ) ?
(

(~α− σ(~α)) � (~β − σ(~β))
)

+

−→uR (−1)?
(

(~uR ? ~α) � (~uR ? ~β)− (a2~xR) ?
(

(~α− σ(~α)) � (~β − σ(~β))
))

.

Notations :
~α ? ~β, the convolution product (~α ?j ~β)j , with ~α ?j ~β =

∑
i αiβj−i .

σ(~α) = (αi−1)i , the cyclic shift of ~α.

~α � ~β = (αiβi)i , the component-wise product.



The result [CL09a]

Theorem
To every couple (q, d) with q a prime power and d > 2 an integer s.t.
dq 6

√q, one can associate a normal basis Θ(q, d) of the degree d
extension of Fq such that the following holds:

There exists an algorithm that multiplies two elements given in
Θ(q, d) at the expense of Õ(d log q) elementary operations.

This can be easily extend to a result without any restriction on q and d .

Remark: Here dq is such that
v`(dq) = v`(d) if ` is prime to q − 1, v`(dq) = 0 if v`(d) = 0,
v`(dq) = max(2v`(q − 1) + 1, 2v`(d)) if ` divides both q − 1 and d .



Application to Torus-based cryptography [DL09]

We have qn − 1 =
∏

d | n Φd(q), and thus F×q '
∏

d | n Td(Fq).

Tn(Fq) ∼= {x ∈ F×qn : xΦn(q) = 1} is an alg. variety of dimension ϕ(n).

Often, no known rational parameterization of Tn(Fq) with ϕ(n)-tuples.

Elliptic basis may yield efficient variants of a nice workaround due to
van Dijk and Woodruff.

T15 × F×q5 × F×q3
θ // F×q × F×q15

x_

��

x51

""



}}

x31

""



}}

x1 x15

T1 × T5 T1 × T3 T1 × T3 × T5 × T15

x xΦ5(q)
5 , xq−15 xΦ3(q)

3 , xq−13
� // x1

_

OO

(t1, t3, t5, t15)
�

55

%

mm



Conclusion

We made use of torsion points on elliptic curves for finite field
algorithms :

irreducible polynomials,
normal basis,
torus-based cryptography
discrete logarithms (in some very particular cases)

It seems useful in other situations,
over the integers, with an elliptic AKS primality criterion,
over the p-adics, for counting points on curves.
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