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Motivation

@ Let R be a (commutative and unitary) ring, the algebra
S = R[x]/(x — a) has shown to be (algorithmically) very useful:
Low complexity normal basis [GL92];
Primality proving [AKSO04];
Discrete Logarithm computations in Finite Fields [JL06];
Fast polynomial factorization and composition [KU08].

@ But, often, there is no primitive d-th root of unity in R
(and embedding the ring R into an auxiliary extension R’ yields important

losses of efficiency).

o Idea: substitute to S one elliptic curve E defined on R, having a
point T € E(R) of exact order d.

Joint works with J.-M. Couveignes, C. Dunand, T. Ezome.



Outline

@ Construction of Irreducible Polynomials

© Elliptic Normal Basis



Outline

@ Construction of Irreducible Polynomials



Classical Method

A classical approach:

@ Choosing a random polynomial of degree d.
@ Testing for its irreducibility.

Complexity:

@ The probability that a polynomial of degree d be irreducible is at
least 1/(2d) [LN83, Ex. 3.26 and 3.27, page 142]

@ Ben-Or’s irreducibility test [BO81], this test has average
complexity (log q)1t°(1) x d1+°(1) elementary operations

A total of (log q)>*°(1) x ¢d?>+°(1) elementary operations.



Another approach [CLO9b]

Difficult to improve things as long as we use an irreducibility test.
We are thus driven to consider very particular polynomials.

Adleman and Lenstra [AL86] construct such irreducible polynomials
(thanks to Gauss periods),
e with (now) complexity quasi-linear in d,

e but only when d = £9 with £ a prime divisor of p(q — 1).

We mimic their construction using isogenies between elliptic curves,
@ with still complexity quasi-linear in d,
@ but d = ¢ is coprime to p(q — 1).

A total complexity of d'o(1) x (log q)5+0(1)_



Artin-Schreier towers : d = p° [LdS08]

For every k € N*, le A) C FP be the subset of a’s in FP s.t.
© a generates [F« over Fp, i.e. Fp(a) = F,
@ a has non-zero absolute trace, i.e. Tra # 0,

@ a! has non-zero absolute trace, i.e. Tra=! # 0.
Especially, A; = [},

Let now / be the map

/: FP\FP — Fp\ {0}
X = (XP=1)/(X+X?+ .-+ XP71)
We check that

o /79(1) is a degree p° irreducible divisor over I,



Examples

fp=2d=2:

2
1
e Compute /(x) = Al ;

o f(x)=x>+1-—x.

If p=2, d=4:

x4—|—x2+1_
x3+x

o f(x)=x*+x>+1—(x*+x).

e Compute (/o /)(x) =

Both are irreducible polynomials in Fp[x].



Radicial extensions : d = ¢° with ¢|p — 1
If £ =2, we ask that 4|p — 1.

First, look for a generator a of the {-Sylow subgroup of F,.
@ Pick random « in F, until a = P~/ £ 1,
@ The probability of success is about 1.

Then the polynomial f(x) = x9

— a is irreducible in Fp[x].

Proof.

The 9*¢-torsion G,[¢°+€] of G, is isomorphic to (Z /{07, +)
The Frobenius ¢q : Gy, — Gy acts on it as mult. by g.

The order of g = 1+ /4% in (Z/(¢HOZ)* is £° = d.

(]
(]
(]
@ So the Frobenius @4 acts transitively on the roots of f(x).




Example

We take p=5,¢=2,9 =3 and d =8.
@ We check that 4 divides p — 1.

@ In particular e =2 and ¢ = 1.
@ The class a = 2 mod 5 generates the 2-Sylow subgroup of (Z/5Z)*.
(24 = 1 mod 5 and 22 = —1 mod 5).

o We set f(x) = x® — 2.



Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over IFp,.

o Assume E(F,) contains a cyclic subgroup 7 of order d.
@ Let /: E — E’ be the degree d cyclic isogeny with kernel T
o Take ain E'(IFp) of order d.

o Consider the fibre I71(a) = > 1o/ [b + t].

IY(8) = Srerlb+c  E(E)




Irreducibility conditions
We factor p + 1 — t = dd’ where d’ is coprime to d.

There exists two integers A and p such that

X?—tX+q = (X—=X\)(X~—pu)modd?,
A =1modd, u=qmodd.

Remember /(b) = a, then b is a d?-torsion point, and

©(b) = Ab (where ¢ is the Frobenius map).

@ The order of A =1 + d)\ mod d? is equal to d.
@ Thus the Galois orbit of b has cardinality d

@ And the d geometric points b + t above a are defined on a degree
d extension o4 of I, (and permuted by Galois action).

[F,a is the residue extension of Fy(E) at P =Y 17 [b+ T].



Example
We take p =7, g =7 and d = 5.

The elliptic curve E/F; : y? = x3 4+ x + 4 has got 10 F7-rational points.
The point t = (6,4) has order £ =5 and

(t) ={Ok, (6,4), (4,4), (4,3), (6,3)} .
The quotient by (t) isogenous curve E’, given by Vélu's formulae, is
E' :y'2 = x> +3x +4.
where, x” in terms of x alone,

;o X +2 1 _X5+x4+2x3—|—5x2—|—4x+5

+ + =
(x+1)°  (x+3) (x +3)* (x +1)?
We choose a = (1,1) in E'(FF7) and finally obtain,

fi(x) = x>+ x*+2x3 +5x°+4x+5—1 (x+3)* (x + 1)
=x°+ X3 +4x> +x+3.



Irreducible polynomials of degree d = ¢°

Algorithm for 4¢ < q% and any 9 :

@ Pick a random elliptic curve E over K and compute its cardinality
using Schoof's algorithm ((log g)>*°() elem. ops).

@ Repeat until the cardinality of E is divisible by ¢ (by a result of
Howe, the average number of trials is O(¢)).

@ Compute a chain of § quotient isogenies of degree ¢ from E with
Vélu's formulas (d**+°(1) x ¢1+o() x (log g)>*°(1) elem. ops).

@ Compose these isogenies with Kedlaya-Umans’ algorithm
(d*+°(M) x (log q)**°(*) elem. ops).

A total of £ x (log g)>T°(t) 4 g¥*o(1) x (log g)?*°(1) elem. ops.



Base change
Now, assume 4¢ > qi, we have to base change to aux. extensions.
Lla]/(F(a)) ~ Fgq

\
K(Zk(a)) =~ Fa

L = K[p]/(p(B)) ~ Fo

K~ T,

© Find a degree r ~ (log /) irreducible polynomial p(8) € K[g]
(negligible cost);

@ Obtain an irreducible polynomial F(x) of degree d in L[x], in time
(log q)> TN dl+e() elem. ops;

© There exists a symmetric function ¥, such that the polynomial

fx)= [ (x— <I>f7(Zk(oz))) € K]x] is irreducible of degree d.
o<i<d



Some technicalities

Three questions to be considered.

© How to compute ¥x(a) and its conjugates ?
o a = x(b) where b is a geometric point of order £*9 in E(L), so

IX st we(b) = Ab (e is the degree Q Frobenius of E/L)

@ How to find the good integer k 7

o Compute the conjugates of « and form the pol. with these roots.
o Y () generates the degree d extension of K iff

@4 (£(0)) # Tu(0) . that is T(@] " (0)) # Tu(a).

© How to compute f(x) € K[x] ?
o Compute the minimal pol.of X, («), with Kedlaya-Umans algorithm.

A total of d'°(1) x (log ¢)?t°(1) elem. ops



Compositum

The last problem to be considered is the following.

Given 2 irreducible polynomials fi(x) and fy(x) with coprime
degrees di and d», construct a deg. did, irreducible polynomial.

This is a classical result.
o Let oy be a root of fi(x) and ay be a root of f(x), then a1 + an
generates an extension of degree did> of Fy.

@ The minimal polynomial of oy + ap, called composed sum in a
work of Bostan, Flajolet, Salvy and Schost, can be computed in
quasi-linear time complexity in did>.

A total of (didp) o) x (log g)t*+°(1) elem. ops.



(Special) Irreducible polynomials over finite fields

Theorem

There exists an algorithm that on input a finite field F,, and a positive
integer d, returns a degree d irreducible polynomial in F4[X]. The
algorithm requires d*+°(Y) x (log q)>*°(1) elementary operations.

Remarks.

@ We consider very particular polynomials (derived from points on
elliptic curves).

@ Some special cases £ = 2,3 have to be handled in specific ways.



(Random) Irreducible polynomials over finite fields

Given a special irreducible polynomial f(x) of degree d, one can
compute a random irreducible polynomial g(x) of degree d with only
d () x (log q)'*°(1) elementary operations.

@ Choose a random element a in L = K[x]/(f(x))

(generates L with probability greater than 1 — %l(q*% —q 9 > 1/2);

Q

@ Compute the minimal polynomial of the element a
(at the expense of d'*°(M)(log q)'*°(\) with Kedlaya-Umans' algorithm);
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Normal basis

Given a finite field Fq, and an integer d, how can we construct qu s.t.
the addition, the multiplication and g power are fast operations,

at most O(d log q) elementary operations ?

A first remark: Since qu is a IF4-vector space of dim. d,

@ it is “natural” to represent elements as vectors over [,

a= (O‘i)iEZ/dZv

@ and addition is obviously fast.

But how about about multiplications and Frobenius maps 7



Ingredient 1: Residue fields of divisors on elliptic curves
(again)

@)= Lrerlb+ i EE)

T =(t)C E(F,) " E'(F,)>a

Again, under some mild condition, ¢(b) — b is a generator of 7 and the
d geometric points above a are defined on a degree d extension F a4 of
F, (and permuted by Galois action).

FF 4 is the residue extension of IF4(E) at P.



Ingredient 2 : simple functions

@ Let E/F, be an elliptic curve given by
Y2Z + i XYZ + a3YZ? = X3 + aoX%Z + an XZ? + a6 Z3 .
e If A, B and C are three pairwise distinct points in E(F,), we define

y(C—-A)-y(A-B)
x(C—A)—x(A-B)"

[(A,B,C) =
o We define a function ua g € Fo(E) by uas(C) =T(A, B, C).

It has degree two with two simple poles, at A and B.



Elliptic Normal Basis
Coming back to the functions uag, we choose for A and B “consecutive
points” in T.
For k € Z/dZ, we more precisely set
Uk = AUkt (k+1)t T b
(a and b, constants chosen such that Y u, = 1),
and we evaluate the uy's at b.

Lemma (A normal basis)

The system © = (ux(b))kez/qz is a Fq normal basis of IF .




© is a basis
Let Ak in Fq such that >"ycy /g7 Akuk(b) = 0.

Let us consider the function f =3,z /47 Ak k-

@ It cancels not only at b, but at b+ t with t € T (because f is
defined over Fy).

@ And f has d poles, the points in 7.

Let us assume f # 0, then (f) = (f)o — (f)oo With

(Fo=>Y_[b+t]and (floc = > _I[t].

teT teT

So, Y er(b+t) — (t) = d b = 0g. This is impossible = f = 0.

Taylor expansions at poles show that all At's are equal.

Since Y ux =1, all Ag’s are thus null.



© is normal

We have

P(un(b)) = u(e(b)),
= uk(b—l—t).

Remember that by def. ux = auy (k41): + b, and thus
QZ)(Uk(b)) = aukt’(k“)t(b + t) + b,

augk—1)e,ke(b) + 6.
= Uk_l(b) .



Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

rNA,B,C) = TI(B,C,A)=-T(B,AC)—a
= —F(—A,—B,—C)—al,
uap+upgc+uca = T(ABC)—ar,
and
upaBuac = Xa+ F(A, B, C)UA7C + F(A, C, B)UA’B
+a> + XA(B) + XA(C) ,
U,%\,B = XA+XB—aluA7B+xA(B)+ag,

where
@ 74 : E — E denotes the translation by A,

@ and in Fg(E), xa =x07_4 and ya =y o7_a.



A fast multiplication algorithm

uaguac = xa+T(A B, CQuac+T(AC,Buag
+a2 + xa(B) + xa(C),
upg = Xa+xg—awuap+xa(B)+a.

This yields a multiplication tensor for © with quasi-linear complexity,

G x f= (@)« ((@—o(@) o (F - () +
GV« (R @) o (i * §) — (a*%r) = ((@ — 0(@)) o (F - o(A)))) -

Notations :
® @ f3, the convolution product (& x; ), with @x; f = 3. ci3j—r.
@ o(d) = (ai-1)i, the cyclic shift of &.

@ dofi= («ifi)i, the component-wise product.



The result [CL093]

Theorem

To every couple (q, d) with q a prime power and d > 2 an integer s.t.
dq < \/q, one can associate a normal basis ©(q, d) of the degree d
extension of Fg such that the following holds:

@ There exists an algorithm that multiplies two elements given in
©(q, d) at the expense of O(d log q) elementary operations.

This can be easily extend to a result without any restriction on g and d.

Remark: Here dj is such that
@ v(dy) = ve(d) if £ is prime to g — 1, vp(dy) = 0 if ve(d) =0,
@ vy(dy) = max(2ve(g — 1) + 1, 2vy(d)) if £ divides both ¢ — 1 and d.




Application to Torus-based cryptography [DL09]

We have " — 1 =T[4, ®Pa(q), and thus Fg ~ T[4, Ta(Fq).
To(Fq) = {x € Fgn : x®n(9) =1} is an alg. variety of dimension ¢(n).
Often, no known rational parameterization of T,(Fq) with ¢(n)-tuples.

Elliptic basis may yield efficient variants of a nice workaround due to
van Dijk and Woodruff.

Tis x Fi  x Fg —0>FX x Fas

X X5 X15

l T1><T5/é><b } (ﬁx@
x ¢5(q) X3~ L “’3 x§~ ] (t1, t3, ts5, t15)



Conclusion

@ We made use of torsion points on elliptic curves for finite field
algorithms :
e irreducible polynomials,
e normal basis,
o torus-based cryptography
o discrete logarithms (in some very particular cases)

@ It seems useful in other situations,

o over the integers, with an elliptic AKS primality criterion,
e over the p-adics, for counting points on curves.
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