Elliptic Periods & Applications

R. Lercier

DGA & University of Rennes — France

email: reynald.lercier(at)m4x.org

www: http://perso.univ-rennes1.fr/reynald.lercier/

ECC 2011 — 15-th Workshop on Elliptic Curve Cryptography
Nancy, September 2011

Motivation

- Let R be a (commutative and unitary) ring, the algebra $S = R[x]/(x^d \alpha)$ has shown to be (algorithmically) very useful:
 - Low complexity normal basis [GL92];
 - Primality proving [AKS04];
 - Discrete Logarithm computations in Finite Fields [JL06];
 - Fast polynomial factorization and composition [KU08].
- But, often, there is no primitive d-th root of unity in R (and embedding the ring R into an auxiliary extension R' yields important losses of efficiency).
- Idea: substitute to S one elliptic curve E defined on R, having a point $T \in E(R)$ of exact order d.

Joint works with J.-M. Couveignes, C. Dunand, T. Ezome.

Outline

Construction of Irreducible Polynomials

Elliptic Normal Basis

Outline

Construction of Irreducible Polynomials

2 Elliptic Normal Basis

Classical Method

A classical approach:

- Choosing a random polynomial of degree *d*.
- Testing for its irreducibility.

Complexity:

- The probability that a polynomial of degree d be irreducible is at least 1/(2d) [LN83, Ex. 3.26 and 3.27, page 142]
- Ben-Or's irreducibility test [BO81], this test has average complexity $(\log q)^{1+o(1)} \times d^{1+o(1)}$ elementary operations

A total of $(\log q)^{2+o(1)} \times d^{2+o(1)}$ elementary operations.

Another approach [CL09b]

Difficult to improve things as long as we use an irreducibility test. We are thus driven to consider very particular polynomials.

Adleman and Lenstra [AL86] construct such irreducible polynomials (thanks to Gauss periods),

- with (now) complexity quasi-linear in d,
- but only when $d=\ell^\delta$ with ℓ a prime divisor of p(q-1).

We mimic their construction using isogenies between elliptic curves,

- with still complexity quasi-linear in d,
- but $d = \ell^{\delta}$ is coprime to p(q-1).

A total complexity of $d^{1+o(1)} \times (\log q)^{5+o(1)}$.

Artin-Schreier towers : $d = p^{\delta}$ [LdS08]

For every $k \in \mathbb{N}^*$, le $\mathcal{A}_k \subset \overline{\mathbb{F}}_p$ be the subset of a's in $\overline{\mathbb{F}}_p$ s.t.

- **1** a generates \mathbb{F}_{p^k} over \mathbb{F}_p , i.e. $\mathbb{F}_p(a) = \mathbb{F}_{p^k}$,
- ② a has non-zero absolute trace, i.e. $\operatorname{Tr} a \neq 0$,
- **3** a^{-1} has non-zero absolute trace, i.e. $\operatorname{Tr} a^{-1} \neq 0$.

Especially,
$$\mathcal{A}_1 = \mathbb{F}_p^*$$
.

Let now / be the map

$$I: \ \overline{\mathbb{F}}_p \setminus \mathbb{F}_p \ \to \ \overline{\mathbb{F}}_p \setminus \{0\}$$

$$X \ \mapsto \ (X^p - 1)/(X + X^2 + \dots + X^{p-1})$$

We check that

- $I^{-1}(\mathcal{A}_k) \subset \mathcal{A}_{pk}$,
- $I^{-\delta}(1)$ is a degree p^{δ} irreducible divisor over \mathbb{F}_p .

Examples

If
$$p = 2$$
, $d = 2$:

• Compute
$$I(x) = \frac{x^2 + 1}{x}$$
;

•
$$f(x) = x^2 + 1 - x$$
.

If
$$p = 2$$
, $d = 4$:

• Compute
$$(I \circ I)(x) = \frac{x^4 + x^2 + 1}{x^3 + x}$$
;

•
$$f(x) = x^4 + x^2 + 1 - (x^3 + x)$$
.

Both are irreducible polynomials in $\mathbb{F}_2[x]$.

Radicial extensions : $d=\ell^\delta$ with $\ell|p-1$

If $\ell = 2$, we ask that 4|p-1.

First, look for a generator a of the ℓ -Sylow subgroup of \mathbb{F}_p^* .

- Pick random α in \mathbb{F}_p^* until $a = \alpha^{(p-1)/\ell^e} \neq 1$.
- The probability of success is about 1.

Then the polynomial $f(x) = x^d - a$ is irreducible in $\mathbb{F}_p[x]$.

Proof.

- ullet The $\ell^{\delta+e}$ -torsion ${f G}_m[\ell^{\delta+e}]$ of ${f G}_m$ is isomorphic to $(\mathbb{Z}/\ell^{\delta+e}\mathbb{Z},+)$
- ullet The Frobenius $arphi_q: \mathbf{G}_m o \mathbf{G}_m$ acts on it as mult. by q.
- The order of $q=1+\ell'\ell^e$ in $(\mathbb{Z}/\ell^{e+\delta}\mathbb{Z})^*$ is $\ell^\delta=d$.
- So the Frobenius Φ_q acts transitively on the roots of f(x).

Example

We take p = 5, $\ell = 2$, $\delta = 3$ and d = 8.

- We check that 4 divides p-1.
- In particular e=2 and $\ell'=1$.
- The class $a=2 \mod 5$ generates the 2-Sylow subgroup of $(\mathbb{Z}/5\mathbb{Z})^*$. $(2^4=1 \mod 5 \text{ and } 2^2=-1 \mod 5)$.
- We set $f(x) = x^8 2$.

Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over \mathbb{F}_p .

- Assume $E(\mathbb{F}_p)$ contains a cyclic subgroup \mathcal{T} of order d.
- Let $I: E \to E'$ be the degree d cyclic isogeny with kernel T
- Take a in $E'(\mathbb{F}_p)$ of order d.
- Consider the fibre $I^{-1}(a) = \sum_{T \in \mathcal{T}} [b+t]$.

Irreducibility conditions

We factor p + 1 - t = dd' where d' is coprime to d.

There exists two integers λ and μ such that

$$X^{2} - tX + q = (X - \lambda)(X - \mu) \mod d^{2},$$

$$\lambda = 1 \mod d, \qquad \mu = q \mod d.$$

Remember I(b) = a, then b is a d^2 -torsion point, and

$$\varphi(b) = \lambda b$$
 (where φ is the Frobenius map).

- The order of $\lambda = 1 + d\lambda' \mod d^2$ is equal to d.
- Thus the Galois orbit of b has cardinality d
- And the d geometric points b+t above a are defined on a degree d extension \mathbb{F}_{a^d} of \mathbb{F}_p (and permuted by Galois action).

$$\mathbb{F}_{q^d}$$
 is the residue extension of $\mathbb{F}_p(E)$ at $\mathcal{P} = \sum_{T \in \mathcal{T}} [b + T]$.

Example

We take p = 7, q = 7 and d = 5.

The elliptic curve $E/\mathbb{F}_7: y^2=x^3+x+4$ has got $10 \mathbb{F}_7$ -rational points.

The point t = (6,4) has order $\ell = 5$ and

$$\langle t \rangle = \{ O_E, (6,4), (4,4), (4,3), (6,3) \}$$
.

The quotient by $\langle t \rangle$ isogenous curve E', given by Vélu's formulae, is

$$E': y'^2 = x'^3 + 3x' + 4.$$

where, x' in terms of x alone,

$$x' = x + \frac{x+2}{(x+1)^2} + \frac{1}{(x+3)^2} = \frac{x^5 + x^4 + 2x^3 + 5x^2 + 4x + 5}{(x+3)^2(x+1)^2}.$$

We choose a=(1,1) in $E'(\mathbb{F}_7)$ and finally obtain,

$$f_a(x) = x^5 + x^4 + 2x^3 + 5x^2 + 4x + 5 - 1(x+3)^2(x+1)^2$$

= $x^5 + x^3 + 4x^2 + x + 3$.

Irreducible polynomials of degree $d=\ell^\delta$

Algorithm for $4\ell\leqslant q^{\frac{1}{4}}$ and any δ :

- Pick a random elliptic curve E over K and compute its cardinality using Schoof's algorithm $((\log q)^{5+o(1)} \text{ elem. ops}).$
- Repeat until the cardinality of E is divisible by ℓ (by a result of Howe, the average number of trials is $O(\ell)$).
- Compute a chain of δ quotient isogenies of degree ℓ from E with Vélu's formulas $(d^{1+o(1)} \times \ell^{1+o(1)} \times (\log q)^{2+o(1)}$ elem. ops).
- Compose these isogenies with Kedlaya-Umans' algorithm $(d^{1+o(1)} \times (\log q)^{1+o(1)})$ elem. ops).

A total of $\ell \times (\log q)^{5+o(1)} + d^{1+o(1)} \times (\log q)^{2+o(1)}$ elem. ops.

Base change

Now, assume $4\ell > q^{\frac{1}{4}}$, we have to base change to aux. extensions.

- Find a degree $r \simeq (\log \ell)$ irreducible polynomial $\rho(\beta) \in \mathbf{K}[\beta]$ (negligible cost);
- ② Obtain an irreducible polynomial F(x) of degree d in $\tilde{\mathbf{L}}[x]$, in time $(\log q)^{5+o(1)}d^{1+o(1)}$ elem. ops;
- **1** There exists a symmetric function Σ_k such that the polynomial

$$f(x) = \prod_{0 \le l \le d} (x - \Phi_q^l(\Sigma_k(\alpha))) \in \mathbf{K}[x]$$
 is irreducible of degree d .

Some technicalities

Three questions to be considered.

- **1** How to compute $\Sigma_k(\alpha)$ and its conjugates ?
 - $\alpha = x(b)$ where b is a geometric point of order $\ell^{e+\delta}$ in $E(\mathbf{L})$, so

$$\exists \lambda \text{ s.t. } \varphi_{\textit{E}}(b) = \lambda b \qquad \qquad (\varphi_{\textit{E}} \text{ is the degree } \textit{Q} \text{ Frobenius of } \textit{E}/\textbf{L})$$

- 2 How to find the good integer k?
 - ullet Compute the conjugates of lpha and form the pol. with these roots.
 - $\Sigma_k(\alpha)$ generates the degree d extension of \mathbf{K} iff $\Phi_q^{\ell^{\delta-1}}(\Sigma_k(\alpha)) \neq \Sigma_k(\alpha)$, that is $\Sigma_k(\Phi_q^{\ell^{\delta-1}}(\alpha)) \neq \Sigma_k(\alpha)$.
- **3** How to compute $f(x) \in \mathbf{K}[x]$?
 - Compute the minimal pol.of $\Sigma_k(\alpha)$, with Kedlaya-Umans algorithm.

A total of $d^{1+o(1)} \times (\log q)^{2+o(1)}$ elem. ops

Compositum

The last problem to be considered is the following.

Given 2 irreducible polynomials $f_1(x)$ and $f_2(x)$ with coprime degrees d_1 and d_2 , construct a deg. d_1d_2 irreducible polynomial.

This is a classical result.

- Let α_1 be a root of $f_1(x)$ and α_2 be a root of $f_2(x)$, then $\alpha_1 + \alpha_2$ generates an extension of degree d_1d_2 of \mathbb{F}_q .
- The minimal polynomial of $\alpha_1 + \alpha_2$, called *composed sum* in a work of Bostan, Flajolet, Salvy and Schost, can be computed in quasi-linear time complexity in d_1d_2 .

A total of $(d_1d_2)^{1+o(1)} \times (\log q)^{1+o(1)}$ elem. ops.

(Special) Irreducible polynomials over finite fields

Theorem

There exists an algorithm that on input a finite field \mathbb{F}_q , and a positive integer d, returns a degree d irreducible polynomial in $\mathbb{F}_q[X]$. The algorithm requires $d^{1+o(1)} \times (\log q)^{5+o(1)}$ elementary operations.

Remarks.

- We consider very particular polynomials (derived from points on elliptic curves).
- Some special cases $\ell=2,3$ have to be handled in specific ways.

(Random) Irreducible polynomials over finite fields

Given a *special* irreducible polynomial f(x) of degree d, one can compute a *random* irreducible polynomial g(x) of degree d with only $d^{1+o(1)} \times (\log q)^{1+o(1)}$ elementary operations.

- Choose a random element a in $\mathbf{L} = \mathbf{K}[x]/(f(x))$ (generates \mathbf{L} with probability greater than $1 \frac{q}{q-1}(q^{-\frac{d}{2}} q^{-d}) > 1/2)$;
- Compute the minimal polynomial of the element a (at the expense of $d^{1+o(1)}(\log q)^{1+o(1)}$ with Kedlaya-Umans' algorithm);

Outline

Construction of Irreducible Polynomials

2 Elliptic Normal Basis

Normal basis

Given a finite field \mathbb{F}_q , and an integer d, how can we construct \mathbb{F}_{q^d} s.t. the addition, the multiplication and q^{th} power are fast operations,

at most $O(d \log q)$ elementary operations?

A first remark: Since \mathbb{F}_{q^d} is a \mathbb{F}_q -vector space of dim. d,

 \bullet it is "natural" to represent elements as vectors over $\mathbb{F}_q,$

$$\vec{\alpha} = (\alpha_i)_{i \in \mathbb{Z}/d\mathbb{Z}},$$

and addition is obviously fast.

But how about about multiplications and Frobenius maps?

Ingredient 1: Residue fields of divisors on elliptic curves (again)

Again, under some mild condition, $\phi(b)-b$ is a generator of $\mathcal T$ and the d geometric points above a are defined on a degree d extension $\mathbb F_{q^d}$ of $\mathbb F_q$ (and permuted by Galois action).

 \mathbb{F}_{q^d} is the residue extension of $\mathbb{F}_q(E)$ at \mathcal{P} .

Ingredient 2: simple functions

• Let E/\mathbb{F}_q be an elliptic curve given by

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$
.

• If A, B and C are three pairwise distinct points in $E(\mathbb{F}_q)$, we define

$$\Gamma(A,B,C) = \frac{y(C-A) - y(A-B)}{x(C-A) - x(A-B)}.$$

• We define a function $u_{A,B} \in \mathbb{F}_q(E)$ by $u_{A,B}(C) = \Gamma(A,B,C)$.

It has degree two with two simple poles, at A and B.

Elliptic Normal Basis

Coming back to the functions u_{AB} , we choose for A and B "consecutive points" in \mathcal{T} .

For $k \in \mathbb{Z}/d\mathbb{Z}$, we more precisely set

$$u_k = \mathfrak{a}u_{kt,(k+1)t} + \mathfrak{b}$$

(a and b, constants chosen such that $\sum u_k = 1$),

and we evaluate the u_k 's at b.

Lemma (A normal basis)

The system $\Theta = (u_k(b))_{k \in \mathbb{Z}/d\mathbb{Z}}$ is a \mathbb{F}_q normal basis of \mathbb{F}_{a^d} .

Θ is a basis

Let λ_k in \mathbb{F}_q such that $\sum_{k \in \mathbb{Z}/d\mathbb{Z}} \lambda_k u_k(b) = 0$.

Let us consider the function $f = \sum_{k \in \mathbb{Z}/d\mathbb{Z}} \lambda_k u_k$.

- It cancels not only at b, but at b+t with $t \in \mathcal{T}$ (because f is defined over \mathbb{F}_q).
- And f has d poles, the points in \mathcal{T} .
- Let us assume $f \neq 0$, then $(f) = (f)_0 (f)_\infty$ with

$$(f)_0 = \sum_{t \in \mathcal{T}} [b+t]$$
 and $(f)_\infty = \sum_{t \in \mathcal{T}} [t]$.

- So, $\sum_{t \in \mathcal{T}} (b+t) (t) = \frac{d}{b} = 0_E$. This is impossible $\Rightarrow f = 0$.
- ullet Taylor expansions at poles show that all λ_k 's are equal.
- Since $\sum u_k = 1$, all λ_k 's are thus null.

Θ is normal

We have

$$\phi(u_k(b)) = u_k(\phi(b)),$$

= $u_k(b+t).$

Remember that by def. $u_k = \mathfrak{a} u_{kt,(k+1)t} + \mathfrak{b}$, and thus

$$\phi(u_k(b)) = \mathfrak{a}u_{kt,(k+1)t}(b+t) + \mathfrak{b},
= \mathfrak{a}u_{(k-1)t,kt}(b) + \mathfrak{b}.
= u_{k-1}(b).$$

Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

$$\Gamma(A, B, C) = \Gamma(B, C, A) = -\Gamma(B, A, C) - a_{1}$$

$$= -\Gamma(-A, -B, -C) - a_{1},$$

$$u_{A,B} + u_{B,C} + u_{C,A} = \Gamma(A, B, C) - a_{1},$$
and
$$u_{A,B}u_{A,C} = x_{A} + \Gamma(A, B, C)u_{A,C} + \Gamma(A, C, B)u_{A,B} + a_{2} + x_{A}(B) + x_{A}(C),$$

$$u_{A,B}^{2} = x_{A} + x_{B} - a_{1}u_{A,B} + x_{A}(B) + a_{2},$$

where

- $\tau_A : E \to E$ denotes the translation by A,
- and in $\mathbb{F}_q(E)$, $x_A = x \circ \tau_{-A}$ and $y_A = y \circ \tau_{-A}$.

A fast multiplication algorithm

$$u_{A,B}u_{A,C} = x_A + \Gamma(A, B, C)u_{A,C} + \Gamma(A, C, B)u_{A,B} + a_2 + x_A(B) + x_A(C), u_{A,B}^2 = x_A + x_B - a_1u_{A,B} + x_A(B) + a_2.$$

This yields a multiplication tensor for Θ with quasi-linear complexity,

$$\vec{\alpha} \times \vec{\beta} = (\mathfrak{a}^2 \vec{\iota}) \star \left((\vec{\alpha} - \sigma(\vec{\alpha})) \diamond (\vec{\beta} - \sigma(\vec{\beta})) \right) + \vec{u}_R^{(-1)} \star \left((\vec{u}_R \star \vec{\alpha}) \diamond (\vec{u}_R \star \vec{\beta}) - (\mathfrak{a}^2 \vec{x}_R) \star \left((\vec{\alpha} - \sigma(\vec{\alpha})) \diamond (\vec{\beta} - \sigma(\vec{\beta})) \right) \right).$$

Notations:

- $\vec{\alpha} \star \vec{\beta}$, the convolution product $(\vec{\alpha} \star_i \vec{\beta})_i$, with $\vec{\alpha} \star_i \vec{\beta} = \sum_i \alpha_i \beta_{i-i}$.
- $\sigma(\vec{\alpha}) = (\alpha_{i-1})_i$, the cyclic shift of $\vec{\alpha}$.
- $\vec{\alpha} \diamond \vec{\beta} = (\alpha_i \beta_i)_i$, the component-wise product.

The result [CL09a]

Theorem

To every couple (q, d) with q a prime power and $d \ge 2$ an integer s.t. $d_q \le \sqrt{q}$, one can associate a normal basis $\Theta(q, d)$ of the degree d extension of \mathbb{F}_q such that the following holds:

• There exists an algorithm that multiplies two elements given in $\Theta(q,d)$ at the expense of $\tilde{O}(d \log q)$ elementary operations.

This can be easily extend to a result without any restriction on q and d.

Remark: Here d_q is such that

- $v_{\ell}(d_q) = v_{\ell}(d)$ if ℓ is prime to q-1, $v_{\ell}(d_q) = 0$ if $v_{\ell}(d) = 0$,
- $v_\ell(d_q) = \max(2v_\ell(q-1)+1, 2v_\ell(d))$ if ℓ divides both q-1 and d.

Application to Torus-based cryptography [DL09]

We have $q^n-1=\prod_{d\mid n}\Phi_d(q)$, and thus $\mathbb{F}_q^\times\simeq\prod_{d\mid n}T_d(\mathbb{F}_q)$.

 $T_n(\mathbb{F}_q) \cong \{x \in \mathbb{F}_{q^n}^{\times} : x^{\Phi_n(q)} = 1\}$ is an alg. variety of dimension $\varphi(n)$.

Often, no known rational parameterization of $T_n(\mathbb{F}_q)$ with $\varphi(n)$ -tuples.

Elliptic basis may yield efficient variants of a nice workaround due to van Dijk and Woodruff.

Conclusion

- We made use of torsion points on elliptic curves for finite field algorithms:
 - irreducible polynomials,
 - normal basis,
 - torus-based cryptography
 - discrete logarithms (in some very particular cases)
- It seems useful in other situations.
 - over the integers, with an elliptic AKS primality criterion,
 - over the *p*-adics, for counting points on curves.

Bibliography I

M. Agrawal, N. Kayal, and N. Saxena.

Primes is in p.

Annals of Mathematics, 160(2):781-793, 2004.

L.M. Adleman and H.W. Lenstra.

Finding irreducible polynomials over finite fields.

Proceedings of the 18th Annual ACM Symposium on the Theory of Computing, pages 350-355, 1986.

M. Ben-Or.

Probabilistic algorithms in finite fields.

22nd Annual Symposium on Foundations of Computer Science, 11:394–398, 1981.

J.-M. Couveignes and R. Lercier.

Elliptic periods for finite fields.

Finite Fields and their Applications, 15(1):1–22, January 2009.

J.-M. Couveignes and R. Lercier.

Fast construction of irreducible polynomials over finite fields.

Eprint arXiv:0905.1642v2, September 2009.

Submitted for publication.

C. Dunand and R. Lercier.

Normal Elliptic Bases and Torus-Based Cryptography.

Eprint arXiv:0909.0236v1, September 2009.

To appear in the proceedings of the 9-th international conference on finite fields and their applications (Fq9).

S. Gao and H.W. Lenstra.

Optimal normal basis.

Designs, Codes and Cryptography, 2:315-323, 1992.

Bibliography II

A. Joux and R. Lercier.

The function field sieve in the medium prime case.

In EUROCRYPT 2006, volume 4004 of Lecture Notes in Comput. Sci., pages 254-270, 2006.

K.S. Kedlaya and C. Umans.

Modular composition in any characteristic.

Foundations of Computer Science, FOCS, 2008.

H. W. Lenstra and B. de Smit.

Standard models for finite fields: the definition.

http://www.math.leidenuniv.nl/\$\sim\$desmit, 2008.

R. Lidl and H. Niederreiter.

Finite Fields.

Addison-Wesley, 1983.