
Patrick Longa

Joint work with C. Gebotys, Z. Hu, M. Xu

Elliptic Curve Cryptography
at High Speeds

The 15th Workshop on Elliptic Curve
Cryptography (ECC 2011)

Microsoft

®

 Research

The Problem

Patrick Longa 1 ECC 2011

Given:

· an elliptic curve E over a finite field K,

· a prime order subgroup E(K) with r elements,
· a (variable) point P Ç E(K), and

· an integer k Ç [1, r - 1]

How to compute point multiplication [k]P at high speeds?

× Somewhat similar techniques apply to operations [k]P with P fixed, and [k]P+ [l]Q

× In this talk, we focus on K being a large prime characteristic field 0p (or 0p2)

A bit of history

This millennium has witnessed a dramatic speed-up thanks to a combination of improved:

computer architectures + techniques + algorithms

[k]P ran iné

 1,920,000 cc Brown-Hankerson-López-Menezes 2000

 1,740,000 cc Hankerson-López-Menezes 2000

 625,000 cc Bernstein 2006

 307,000 cc Gaudry-Thomé 2007

 293,000 cc Scott 2008

 181,000 cc Longa 2010

Today it runs iné

 120,000 cc Longa 2011

Patrick Longa 2 ECC 2011

Modern x86-64 Processors

Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA

(computer wordsize w = 64)

Main features:
· 64-bit GPRs and operations with powerful multiplier ø favours 0p arithmetic

· Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

· Aggressive out-of-order scheduling to exploit Instruction Level Parallelism (ILP)

· Sophisticated branch predictors

Key observation:
As w ŷ , Þ(log p)/wí Ź , number of stages in pipeline gets larger and scheduling gets more
aggressive, ñnegligibleò operations/issues get significant: addition, subtraction,

division/multiplication by constants, pipeline stalls (due to data dependencies) and branch

mispredictions

Patrick Longa 3 ECC 2011

Approach

Bottom-up optimization of each ECC arithmetic layer taking into account

architectural features of processors

E.g., quadratic extension field arithmetic on GLS curves

FIELD

ARITHMETIC

POINT

ARITHMETIC

SCALAR

ARITHMETIC

Scalar multiplication algorithm:

[k]P = P + P + é + P

Doubling and addition of ECC points:

2P , P + Q

Field addition, subtraction,

multiplication, squaring, inversion

EXTENSION FIELD ARITHMETIC

Patrick Longa 4 ECC 2011

The Settings

Curve Forms

Many curve forms are available with different advantages (fast arithmetic, certain

resilience against some side-channel attacks, etc.)

Most popular curves (and arguably the most efficient ones):

ü (Short) Weierstrass: E/K: y2 = x3 + ax + b, where a, b Ç K.

 For efficiency

 Option 1: a = ï3

 Option 2: a = 0 (j-invariant 0 curve)

ü Twisted Edwards: E/K: ax2 + y2 = 1 + dx2 y2, where a, d Ç K*, a Í d.

 For efficiency a = -1.

Patrick Longa 5 ECC 2011

GLV and Fast Endomorphisms

Gallant-Lambert-Vanstone in 2001:

Letôs assume we have a curve E and a prime order subgroup G on E (of order r) with an

efficiently computable endomorphism Ã s.t. Ã (x,y) Ÿ (®x, ̄ y), Ã(P) = ̧ P, where ̧ is a

root of the characteristic polynomial of Ã

Then, assuming the decomposition k = k0 + k1¸

[k]P = [k0]P + [k1](¸ P) = [k0]P + [k1] Ã(P)

where log k0 å log k1 å İ log k

Č Using simultaneous multi-scalar multiplication the number of doublings is cut to half

× In settings where ki cannot be chosen randomly, ki can be computed from k by solving

CVP on a lattice (where usually many computations can be performed off-line)

× (Arguably) most efficient curve exploiting GLV: j-invariant 0 Weierstrass curve

y2 = x3 + b, where p = 1 mod 3

Patrick Longa 6 ECC 2011

2-GLV on GLS Curves

The GLV method was applicable to only a constrained set of curves untilé

Galbraith -Lin -Scott in 2009:

Let E be an elliptic curve over 0p , s.t. the quadratic twist Eô of E(0p2) has an efficiently

computable homomorphism Ã (x,y) Ÿ (®x, ̄ y), Ã(P) = ̧ P

· Ã arises from the p-power Frobenius map ¼ on Eô, that is Ã = Á ¼ Á ï1, where Á: E Ÿ Eô

is the twisting isomorphism

· ¸ 2+1 = 0 (mod r). Thus, Ã 2(P) + P = D.

Remarkably, 2-dimensional GLV now applies to a large number of curves of different

forms (e.g., Weierstrass and Twisted Edwards curves)

× In settings where ki cannot be chosen randomly, GLS showed that solving the CVP

in this case is even simpler (no lattice reduction needed) and that |ki| Ò (p+1)/ ς.

Patrick Longa 7 ECC 2011

2-GLV on GLS Curves

E.g., given E(0p), p > 3, the quadratic twist of E(0p2) is

 Eô/0p2 : y2 = x3 + µ2ax + µ3b,

where µ is a non-square in 0p2 , #Eô(0p2) = (p + 1 ï t)(p + 1 + t).

The homomorphism is given by

 <(x,y) ὼȟ ώ

Patrick Longa 8 ECC 2011

4-GLV on GLS Curves

Galbraith-Lin-Scott also sketched how to build a 4-dim GLV on special curves

Given E/0p = y2 = x3 + b, p = 1 (mod 6), the quadratic twist of E(0p2) is

 Eô/0p2 : y2 = x3 + µ6b,

where µ Ç 0p12 and µ6 Ç 0p2, #Eô(0p2) = (p + 1 ï t)(p + 1 + t).

The homomorphism is computed again as Ã = Á ¼ Á ï1, where the twisting isomorphism

Á: E Ÿ Eô is given by Á = (µ2x, µ3y) and

 Ã 4(P) ï Ã 2(P) + P = D

Then, assuming the decomposition k = k0 + k1¸ + k1¸
2 + k1¸

3 mod r

[k]P = [k0]P + [k1](¸ P) + [k1](¸
2 P) + [k1](¸

3 P) = [k0]P + [k1] Ã (P) + [k1] Ã 2(P) + [k1] Ã 3(P)

Patrick Longa 9 ECC 2011

4-GLV on GLS Curves

× Using simultaneous multi-scalar multiplication the number of doublings is cut to a

quarter!

× In settings where ki cannot be chosen randomly, Hu-Longa-Xu recently showed how

to decompose k in this case achieving the maximum bound |ki| Ò ςςὴ.

Patrick Longa 10 ECC 2011

That was the theory and itôs nice buté

 how to make it work efficiently in the real world???

Patrick Longa 11 ECC 2011

Field Arithmetic
Χ ǿƛǘƘ ŦƻŎǳǎ ƻƴ 0p and 0p2

Efficient Primes

For high performance choose a Mersenne prime p = 2m ï 1

Č Reduction is extremely efficient (performed with a few adds, shifts and rotates)

Or (if not possible) choose a pseudo-Mersenne prime p = 2m ï c, where c is ñsmallò

(i.e., c < 2w, w is computer wordsize)

Č Reduction is still very efficient

Č A few additional techniques can be applied and combined

E.g., incomplete reduction and lazy reduction

Patrick Longa 12 ECC 2011

Incomplete Reduction

Yanik-Savaĸ-Koç in 2002:

Given a, b Ç [0, p - 1], allow the result of a given operation to stay in the range [0, 2m - 1]

instead of performing a complete reduction, where p < 2m < 2p - 1.

Some additional observations:

· If using p = 2m ï c, where c < 2w, m = n.w (n: number of words, w: wordsize)

Č Reduction after addition a + b : discard carry bit in most significant word and then add c

· If using p = 2m ï c, where c < 2w, m = n.w ï z (z: very small integer)

Č Reduction slightly more expensive after addition a + b. However, a few additions may be
accumulated w/o reduction

× Subtraction does not require IR (already optimal!). But other operations may benefit from
IR: addition between completely reduced and incompletely reduced numbers, multiplication
by constant, division by constant,é

Patrick Longa 13 ECC 2011

Algorithm. Modular div2 with pseudo-Mersenne prime

Input: integer a Ç [0, 2m - 1], p = 2m ï c

Output: (a) r = a/2 (mod p) or (b) a/2 Ç [1, 2m ï 1]

(a) Complete reduction (b) Incomplete reduction

 1. carry = 0 1. carry = 0

 2. If a is odd 2. If a is odd

 3. For i from 0 to (n - 1) do 3. For i from 0 to (n - 1) do

 4. (carry, r[i]) Ŷ a[i] + p[i] + carry 4. (carry, r[i]) Ŷ a[i] + p[i] + carry

 5. For i from (n - 1) to 0 do 5. For i from (n - 1) to 0 do

 6. (carry, r[i]) Ŷ (carry, r[i])/2 6. (carry, r[i]) Ŷ (carry, r[i])/2

 7. borrow = 0 7. Return r

 8. For i from 0 to (n - 1) do

 9. (borrow, R[i]) Ŷ r[i] - p[i] - borrow

10. If borrow = 0

11. r Ŷ R

12. Return r

(r ï p) in case r = (p+a)/2 Ç [p, 2m ï (c+1)/2]

Incomplete Reduction

Patrick Longa 14 ECC 2011

A sum of products × Ñai bi mod p can be reduced with only one reduction modulo p

·Inner products are accumulated as ñdouble-precisionò integers, and
·× Ñ ai bi < 2s, where s = t.w (for efficiency), where t is number of words to

represent a dp integer

Č E.g., multiplication in 0p2 (c = aĬb using Karatsuba):

 Let a = (a0, a1) and b = (b0, b1) Ç 0p2

 c0 = (a0 Ĭ b0) + ɓ (a1 Ĭ b1)

 c1 = (a0 + a1) Ĭ (b0 + b1) - a0 Ĭ b0 - a1 Ĭ b1

rdcn

rdcn

3M + 3R

3M + 2R

Lazy reduction in 0p2

Patrick Longa 15 ECC 2011

· Let p = 2127 ï 2569, w = 64, t = 4 Č 2s = 2256
· Let a0,a1,b0,b1 Ç [0, 2127 ï 1], i.e., incompletely reduced numbers

· Let 0p2 = 0p [i]/(i
2 + 1) (since ï1 is QNR in 0p)

·Multiplication in 0p2 , aĬb = (a0, a1) Ĭ (b0, b1) :

T0 Ŷ a0 Ĭ b0 [0, 2254]

T1 Ŷ a1 Ĭ b1 [0, 2254]

c0 Ŷ T0 ï T1 (mod p) if <0 correct by adding 2128.p Č [0, 2255]. After rdcn Č [0, 2127ï2569]

t0 Ŷ a0 + a1 [0, 2128], no rdcn

t1 Ŷ b0 + b1 [0, 2128], no rdcn

T2 Ŷ t0 Ĭ t1 [0, 2256]

T2 Ŷ T2 ï T0 [0, 2256], no correction to (+)

c1 Ŷ T2 ï T1 (mod p) [0, 2256], no correction to (+). After rdcn Č [0, 2127ï2569]

c0 = (a0 Ĭ b0) - (a1 Ĭ b1)

c1 = (a0 + a1) Ĭ (b0 + b1) - a0Ĭb0 - a1Ĭb1

Incomplete + Lazy reduction in 0p2

Patrick Longa 16 ECC 2011

One can even eliminate a few reductionsé

Generalized lazy reduction: [Aranha-Karabina-Longa-Gebotys-López 2011] easily adaptable to
our case with a few variations

· ñDelayò 0p2 reductions in point formulas

· E.g., let T = (X1, Y1, Z1) Ç Eô(0p2) be in Jacobian coordinates.

 To compute 2T = (X2, Y2, Z2), consider the doubling formula [Longa-Gebotys 2010]:

 X2 = A2 ï 2B

 Y2 = A(B ï X2) ï Y1
4

 Z2 = Y1Z1,

where A = 3(X1+Z1

2)(X1 ï Z1
2)/2 and B = X1Y1

2

This formula costs 4mu + 4su + 9a + 7r (eliminating one 0p2 reduction)

× More details for the case of pairings in Diego Aranhaôs talk

Generalized Lazy Reduction for ECC

rdcn

Patrick Longa 17 ECC 2011

Conditional Branches

· Modular operations are traditionally implemented with conditional branches

 Example: addition
 Given a, b Ç [0, p - 1], execute a + b. If a + b > p, then a + b ï p

· Condition is true ~50% in a random pattern ø worst ñnightmareò of predictors

· So it is better to eliminate CBs in modular reduction (a.k.a. branchless arithmetic).

 Two alternatives:

· Using predicated move instructions (e.g., cmov in x86)

· Using look-up tables and indexed indirect addressing

× Basic idea: perform reduction with 0 when it is not actually required

Patrick Longa 18 ECC 2011

Cost (in cycles) of 256-bit modular operations, p = 2256 ï 189

· Cost reductions using IR in the range 7% - 41%

· Cost reductions by eliminating conditional branches as high as 50%

· Operations using IR are more benefited

 Modular operation
w/o

CB

with

CB

Cost reduction

(%)

w/o

CB

with

CB

Cost reduction

(%)

Sub 21 37 43% 16 23 30%

Add with IR 20 37 46% 13 21 38%

Add 25 39 36% 20 23 13%

Mul2 with IR 19 38 50% 10 19 47%

Mul2 24 38 37% 17 20 15%

Div2 with IR 20 36 44% 11 18 39%

Div2 25 39 36% 18 27 33%

Intel Core 2 Duo AMD Opteron

IR and CBs

Patrick Longa 19 ECC 2011

ñContiguousò dependencies: Read-after-Write (RAW) dependencies between successive

field operations

 > addq %rcx,%r8

 > movq %r8, 8 (%rdx)

 > adcq $0,%r9

 > movq %r9, 16 (%rdx)

 > adcq $0,%r10

 > movq %r10,24(% rdx)

 > adcq $0,%r11

 > Add(op1,op2,res1) > movq %r11,32(% rdx)

 > Add(res1,op3,res2) > xorq %rax,%rax

 > movq $0xBD,%rcx

 > movq 8(%rdi) ,% r8

 > addq 8(%rsi) ,% r8

 > movq 16(%rdi),%r9

 > adcq 16(%rsi),%r9

 > movq 24(%rdi),%r10

 > adcq 24(%rsi),%r10

 > movq 32(%rdi),%r11

 > adcq 32(%rsi),%r11

Field Operations Assembly instructions

(True) Data Dependencies

p : ñdistanceò between instructions

ñIdealò non-superscalar CPU:

Pipeline stalls for ~(bwrite + p) cycles

bwrite : pipeline latency of write

 instruction

Patrick Longa 20 ECC 2011

ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ

We propose three solutions to eliminate ñcontiguousò dependencies:

1. Field arithmetic scheduling ø execute other field operations while previous

memory writings complete their pipeline latencies

2. Merging point operations ø more possibilities for field operation rescheduling

(it additionally reduces number of function calls)

3. Merging field operations ø direct elimination of ñcontiguousò dependencies

(it additionally reduces memory reads/writes)

 E.g., a ï b ï c (mod p), a + a + a (mod p)

 a ï 2b (mod p), merging of a ï b (mod p) and (a ï b) ï 2c (mod p)

Patrick Longa 21 ECC 2011

ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ
Point Doubling: (X1,Y1,Z1) Ŷ 2(X1,Y1,Z1)

 ñUnscheduledò Scheduled Scheduled and
 merged DBL-DBL

 > Sqr (Z1,t3) > Sqr (Z1,t3) > Sqr (Z1,t3)

 > Add(X1,t3,t1) D > Sqr (Y1,t2) > Sqr (Y1,t2)

 > Sub(X1,t3,t3) > Add(X1,t3,t1) > Add(X1,t3,t1)

 > Mult (t3,t1,t2) D > Sub(X1,t3,t3) > Sub(X1,t3,t3)

 > Mult3(t2,t1) D > Mult3(t3,t0) D > Mult3(t3,t0) D

 > Div2(t1,t1) D > Mult (X1,t2,t4) > Mult (X1,t2,t4)

 > Mult (Y1,Z1,t3) > Mult (t1,t0,t3) > Mult(t1,t0,t3)

 > Sqr (Y1,t2) > Sqr (t2,t0) > Sqr (t2,t0)

 > Mult (t2,X1,t4) D > Div2(t3,t1) > Div2(t3,t1)

 > Sqr (t1,t3) > Mult (Y1,Z1,Z1) > Mult (Y1,Z1,Z1)

 > Sub(t3,t4,X1) D > Sqr (t1,t2) > Sqr (t1,t2)

 > Sub(X1,t4,X1) D > DblSub (t2,t4,X1) D > Sqr (Z1,t3)

 > Sub(t4,X1,t3) D > Sub(t4,X1,t2) D > DblSub (t2,t4,X1)

 > Mult (t3,t1,t4) D > Mult (t1,t2,t4) D > Sub(t4,X1,t2) D

 > Sqr (t2,t0) > Sub(t4,t0,Y1) D > Add(X1,t3,t5)

 > Sub(t4,t0,Y1) D > Mult (t1,t2,t4)

 > Sub(X1,t3,t3)

 > Sub(t4,t0,Y1)

 > Mult3(t3,t1)

 > Sqr (Y1,t2)

 > é

Patrick Longa 22 ECC 2011

Cost (in cycles) of point doubling, p = 2256 ï 189

· Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, resp.

· Less ñaggressiveò architectures are not greatly affected by ñcontiguousò dependencies

Point operation ñUnscheduledò
Scheduled and

merged
ñUnscheduledò

Scheduled and

merged
ñUnscheduledò

Scheduled and

merged

DBL 3390 3332 1115 979 786 726

Relative reduction - 2% - 12% - 8%

Estimated reduction for

[k]P
- 1% - 9% - 5%

Intel Core 2 Duo AMD Opteron

ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ

Intel Atom

Patrick Longa 23 ECC 2011

· Similar ideas apply

· Conditional branches can be avoided by clever choice of p (e.g., p = 2127 ï 1)

·ñContiguousò dependencies are more expensive (n = 2 words), but more easily

avoided by rescheduling ø scheduling at 0p2 and 0p levels

· More opportunities for merging field operations because of 0p2 / 0p interaction and

reduced operand size (more GPRs are available for intermediate computations)

 E.g., a ï 2b (mod p), (a + a + a)/2 (mod p), a + b ï c (mod p),

 merging of a + b (mod p) and a ï b (mod p), merging of a ï b (mod p) and c ï d

 (mod p), and merging of a + a (mod p) and a + a + a (mod p)

What about 0p2 arithmetic?

Patrick Longa 24 ECC 2011

Point Arithmetic

Jacobian Coordinates
Faster formulas with reduced number of ñaddsò (assuming add=sub=div2=mul2):

· Jacobian coordinates on short Weierstrass curve (a = ï3): y2 = x3 + ax + b
(x, y) S (X/Z2, Y/Z3, 1), (X : Y : Z) = {(¸ 2X, ¸ 3Y, ̧ Z): ¸ Ç 0p

*}

 DBL Č 4M + 4S + 9A [Longa 2010]

 mDBLADD (Z2 = 1) Č 13M + 5S + 13A [Longa 2007]

 mADD (Z2 = 1) Č 8M + 3S + 7A [Hankerson-Menezes-Vanstone 2004]

· Jacobian coordinates on short Weierstrass curve (a = 0): y2 = x3 + b
(x, y) S (X/Z2, Y/Z3, 1), (X : Y : Z) = {(¸ 2X, ̧ 3Y, ̧ Z): ¸ Ç 0p

*}

 DBL Č 3M + 4S + 7A [Longa 2010]

 mADD (Z2 = 1) Č 8M + 3S + 7A [Hankerson-Menezes-Vanstone 2004]

× One may replace muls for sqrs if 1mul > 1sqr + 3ñaddsò using the transformation
a .b = [(a+b)2 ï a2 ï b2]/2, when a2 and b2 are known

Patrick Longa 25 ECC 2011

Jacobian Coordinates

Minimizing costs:

· Trade additions for subtractions (or vice versa) by applying ¸ = ï1 Ç 0p

*

· Minimize constants and additions/subtractions by applying ¸ = 2ï1 Ç 0p
*

E.g., (X2,Y2,Z2) Ŷ 2(X1,Y1,Z1) using Jacobian coordinates

A = 3(X1 + Z1
2)(X1 ï Z1

2), B = 4X1Y1
2 A = 3(X1 + Z1

2)(X1 ï Z1
2)/2, B = X1Y1

2

X2 = A2 ï 2B X2 = A2 ï 2B

Y2 = A(B ï X2) ï 8Y1
4 Y2 = A(B ï X2) ï Y1

4

 Z2 = 2Y1Z1 Z2 = Y1Z1

· Most constants are eliminated

· More formulas using Jacobian coordinates:

http://patricklonga.bravehost.com/jacobian.html

Patrick Longa 26 ECC 2011

Twisted Edwards Coordinates
Assuming again add=sub=div2=mul2

· Mixed extended/homogeneous coordinates on Twisted Edwards curve (a = ï1):

ax2 + y2 = 1 + dx2 y2

 (x, y) S (X/Z, Y/Z, 1, T/Z), T = XY/Z

 (X : Y : Z : T) = {(¸ X, ̧ Y, ̧ Z , ̧ Z): ¸ Ç 0p
*}

 DBL Č 4M + 3S + 6A [Bernstein-Birkner-Joye-Lange-Peters 2008]

 DBLADD Č 12M + 3S + 11A [Hisil-Wong-Carter-Dawson 2008]

× For all these formulas, one may replace muls for sqrs if 1mul > 1sqr + 3ñaddsò

 (however, that is not generally the case on many processors!)

× (In some cases) there are some additional ops when working on a GLS curve over 0p2

(operations with twisting parameter ¹)

Patrick Longa 27 ECC 2011

Point Arithmetic
Summarizing most efficient formulas:

× Assuming that multiplying by ¹ costs about 2 adds

Operation Coord. Curve Cost Cost

(GLS method)

DBL Jacobian Weierstrass,

a = 0

3M + 4S + 7A same

DBL Jacobian Weierstrass,

a = ï3

4M + 4S + 9A 4M + 4S + 11A

mADD Jacobian Weierstrass,

a = 0, a = ï3

8M + 3S + 7A same

mDBLADD Jacobian Weierstrass,

a = ï3

13M + 5S + 13A same

DBLADD Jacobian Weierstrass,

a = ï3

16M + 5S + 13A same

DBL homogeneous Twisted Edw.

a = ï1

4M + 3S + 5A 4M + 3S + 7A

mDBLADD Mixed extended/

homogeneous

Twisted Edw.

a = ï1

11M + 3S + 11A 12M + 3S + 16A

DBLADD Mixed extended/

homogeneous

Twisted Edw.

a = ï1

12M + 3S + 11A 13M + 3S + 16A

Patrick Longa 28 ECC 2011

Scalar Arithmetic

Scalar Arithmetic

Typicallyé

1. Conversion of scalar k to an efficient representation

2. Precomputation (if applicable)

3. Evaluation of [k]P using double-and-add algorithm

A slight variation for case with GLV methodé

1. (If required) decomposition of k to get smaller integers ki

2. Conversion of scalars ki to an efficient representation

3. Precomputation (if applicable)

4. Evaluation of В [ki]<
ix(P) using interleaving, for m-dimension GLV

 (slightly abusing notation by assuming <0x(P) = P)

Patrick Longa 29 ECC 2011

Scalar Arithmetic (standard case)

1. Convert k to an efficient ñwindow-basedò representation, e.g., fractional width-w

non-adjacent form (frac-wNAF):

 k = В Ὧς, where ki Ç {0,Ñ1,Ñ3,Ñ5, é ,Ñt}

· (w ï 1) ñ0ò-digits between nonzero digits

· If t = 2wï1ï 1, w Ó 2 Ç D ø traditional integral window, nonzero density (w+1)ï1

2. Precompute (t ï 1)/2 non-trivial points {P, [3]P, [5]P, é , [t]P}

Avoid inversions since are usually expensive

· For Jacobian coord., one can use the efficient LM scheme [Longa-Miri 2008]

· For Twisted Edwards, compute P + 2P + 2P + é + 2P using general additions

3. Evaluate [k]P using a double-and-doubleadd algorithm

· Two main functions: merged (wï1)DBL and DBLADD

Patrick Longa 30 ECC 2011

Scalar Arithmetic for GLV Method

1. (If required) decompose k

2. Use (fractional) wNAF to convert ki

3. Precompute (t ï 1)/2 non-trivial points T0 = {P, [3]P, [5]P, é , [t]P}
Inversion is not so expensive (case 0p2): convert to affine and exploit mixed coord.

· For Jacobian coord., use LM method with one inversion, [Longa-Miri 2008]

· For Twisted Edwards, compute P + 2P + 2P + é + 2P using general additions

(general addition is only 1Mul more expensive than mixed addition)

(If applying < is cheaper than addition) apply homomorphism é

 for i = 1 to (m ï 1) do

 Ti = <(Tiï1)

 end for

é to get [s]<i

(P), where s in {1, 3, 5, é , t}

Note that [s]<(P) = <([s]P)

Patrick Longa 31 ECC 2011

Scalar Arithmetic for GLV Method

4. Apply interleaving [Gallant-Lambert-Vanstone 2001]

Let [k]P = В [ki]<
ix(P) ,

ki = k(i,lï1)2
lï1 + k(i,lï2)2

lï2 + é + k(i,0) ,

precomputed points [s]<i

(P)

 Q = D

 for j = l ï 1 down to 0 do

 Q = [2]Q

 for i = 0 to (m ï 1) do

 if k(i,j) Í 0, Q = Q + [k(i,j)]<
i (P)

 end for

 end for

Patrick Longa 32 ECC 2011

The Numbers

Performance Results

· Implementation of variable-scalar-variable-point [k]P with ~128-bit security

·Everything in C except the underlying (extension) field arithmetic (which is in

assembly)

·Plugged to MIRACL library [Scott]

Patrick Longa 33 ECC 2011

The Curves
Six curve variants:

· Weierstrass curve using Jacobian coordinates, p = 2256ï189: jac256189

 E/0p : y
2 = x3 ï 3x + b, with

 #E(0p) = p + 1 ï t = 10r, r prime

· Twisted Edwards curve, p = 2256ï 189: ted256189

 E/0p : ï x
2 + y2 = 1 + 358x2 y2 , #E(0p) = 4r, r prime

· 2-GLV on GLS curve using Jacobian coordinates, p = 2127ï1: jac1271gls

 Eô/0p2 : y2 = x3 ï 3µ2x + 44µ3, µ = 2 + i Ç 0p2 , #Eô(0p2) = (p ï 1)2 + t2 is prime

· 2-GLV on GLS curve using Twisted Edwards coord., p = 2127ï1: ted1271gls

 Eô/0p2 : ïµx2 + y2 = 1 + 109µx2 y2 , µ = 2 + i Ç 0p2 , #Eô(0p2) = 4r, r prime

· 2-GLV on j-invariant 0 Weierstrass curve using Jacobian coord., p = 2256ï 1539: jac256glv

 E/0p : y2 = x3 + 5, #E(0p) = p + 1 ï t = r, r prime

· 4-GLV on j-invariant 0 GLS curve using Jacobian coord., p = 2128ï 40557: jac128gls4

 Eô/0p2 : y2 = x3 + µ7, µ = 1 + i Ç 0p2 , #Eô(0p2) = (p ï 1)2 + t2 = r, r prime

0 fd63c3319814da55e88e9328e96273c483dca6cc84df53ec8d91b1b3e0237064b= ³

Patrick Longa 34 ECC 2011

GLS vs. Standard Method

Performance comparison between E/0p and Eô/0p2 is complicated

(GLS method works over a smaller field but 0p2 arithmetic involves many more

operations)

On software platforms, Galbraith-Lin-Scott only showed that in practice 2-GLV for case
Eô/0p2 is faster than a Montgomery curve

×But it would be useful to know if it is indeed faster than the ñstandardò method on the

same curve form

Patrick Longa 35 ECC 2011

GLS vs. Standard Method
First we find that (M/S/A/I for 0p operations, m/s/a/i for 0p2 operations):

Muhmmé gives an idea but still nothing clear.

Letôs try in practice with our best techniques (results in clock cycles)

Curve Method Operation count

Ted1271gls, 127-bit p 2-GLV-GLS 995m + 393s + 1361a + 1i

Ted256189, 256-bit p standard 1402M + 755S + 1579A + 1I

Jac1271gls, 127-bit p 2-GLV-GLS 948m + 579s + 1567a + 2i

Jac256189, 256-bit p standard 1544M + 1073S + 2491A + 1I

Curve Method Intel Xeon

W3530

AMD Phenom

II X4 940

Intel Core i7-

2620M

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000

Ted256189, 256-bit p standard 250,000 213,000 196,000

Jac1271gls, 127-bit p 2-GLV-GLS 203,000 188,000 178,000

Jac256189, 256-bit p standard 298,000 252,000 237,000

Patrick Longa 36 ECC 2011

GLS vs. Standard Method

× 2-GLV on GLS curves compute [k]P in 0.68-0.85 the time of the standard method

What about 4-GLV on GLS curves???

· 4-GLV on j-invariant 0 GLS curve significantly improves 2-GLV on the same curve

· Also great improvement in comparison with 2-GLV on GLS Twisted Edwards curve

· But, again, improvement relative to standard 2-GLV is not clear

Curve Method Operation count

Jac128gls4, 128-bit p 4-GLV-GLS 648m + 408s + 830a + 2i

Jac128gls2, 128-bit p 2-GLV-GLS 812m + 664s + 1264a + 2i

Jac256glv, 256-bit p 2-GLV 893M + 666S + 1251A + 1I

Ted1271gls, 127-bit p 2-GLV-GLS 995m + 393s + 1361a + 1i

Patrick Longa 37 ECC 2011

GLS vs. Standard Method
In practice (results in clock cycles):

· 4-GLV on j-invariant 0 GLS curves compute [k]P in 0.77-0.85 the time of the 2-GLV
method on a standard j-invariant 0 curve

· In 2010, Ted1271gls was the fastest implementation in the literature [Longa and
Gebotys, CHES2010]. Now Jac128gls4 improves its performance in up to 28%

NOTE: implementations are being constantly improved and reported timings may differ
from published results. For latest counts, always refer to:

http://patricklonga.bravehost.com/speed_ecc.html#speed

Curve Method Intel Xeon

W3530

AMD Phenom

II X4 940

Intel Core i7-

2620M

Jac128gls4, 128-bit p 4-GLV-GLS 165,000 140,000 120,000

Jac128gls2, 128-bit p 2-GLV-GLS 216,000 180,000 154,000

Jac256glv, 256-bit p 2-GLV 193,000 173,000 156,000

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000

Patrick Longa 38 ECC 2011

Other Implementations in the Literature

· Jac128gls4, Jac256glv and Ted1271gls are significantly faster than best

implementations

· Jac128gls4 runs in 0.61-0.73 the time of the very recent implementation of curve25519

Implementation Method Intel Xeon

W3530

AMD Phenom II

X4 940

Intel Core i7-

2620M

Jac128gls4, 128-bit p 4-GLV-GLS 165,000 140,000 120,000

Jac256glv, 256-bit p 2-GLV 193,000 173,000 156,000

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000

Curve25519, 255-bit p

[Bernstein et al., CHES2011]

Montgomery 229,000 212,000 194,000

gls127-ref4, 127-bit p

[Scott]

2-GLV-GLS 272,000 266,000 247,000

Patrick Longa 39 ECC 2011

Prime vs. Binary Fields
· Advances in computer architectures seem to have favoured prime fields

· New carry-less multiplier in recent Intel processors has brought binary fields back to
the fight; see [Taverne et al., CHES2011]

· Although closer, latest advances over prime fields still give them the lead for a wide
margin (~2x speed-up)

· However, it is expected that an implementation of Koblitz curve over 02283 achieves

very close performance to Jac128gls4
(this prediction only applies to very recent Intel processors for now)

Implementation Method Intel Core i7-26xx

(GCC compiler)

Jac128gls4, 128-bit p 4-GLV-GLS 120,000

curve2251, GF(2251)

[Taverne et al., CHES2011]

Montgomery 245,000

(225,000 with ICC)

Patrick Longa 40 ECC 2011

