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Given:  

 

· an elliptic curve E over a finite field K, 

· a prime order subgroup E(K) with r elements, 
· a (variable) point P Ç E(K), and  

· an integer k Ç [1, r - 1] 

 

 

How to compute point multiplication [k]P at high speeds? 

  

 

 

 

 

 

× Somewhat similar techniques apply to operations [k]P with P fixed, and [k]P+ [l]Q 

× In this talk, we focus on K being a large prime characteristic field 0p  (or 0p2)             



A bit of history 

This millennium has witnessed a dramatic speed-up thanks to a combination of improved: 

 

computer architectures + techniques + algorithms 

 

[k]P ran iné 

    1,920,000 cc  Brown-Hankerson-López-Menezes 2000 

            1,740,000 cc    Hankerson-López-Menezes 2000 

                         625,000 cc  Bernstein 2006 

                         307,000 cc  Gaudry-Thomé 2007 

                  293,000 cc  Scott 2008 

                  181,000 cc  Longa 2010 

Today it runs iné 

                  120,000 cc  Longa 2011 
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Modern x86-64 Processors 

Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA  

(computer wordsize w = 64)  

 

Main features: 
· 64-bit GPRs and operations with powerful multiplier ø favours 0p arithmetic 

· Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages) 

· Aggressive out-of-order scheduling to exploit Instruction Level Parallelism (ILP) 

· Sophisticated branch predictors 

 

 

Key observation:  
As  w ŷ , Þ(log p)/wí  Ź , number of stages in pipeline gets larger and scheduling gets more 
aggressive, ñnegligibleò operations/issues get significant: addition, subtraction, 

division/multiplication by constants, pipeline stalls (due to data dependencies) and branch 

mispredictions 
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Approach 

Bottom-up optimization of each ECC arithmetic layer taking into account 

architectural features of processors 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

E.g., quadratic extension field arithmetic on GLS curves 

 

FIELD 

ARITHMETIC 

POINT 

ARITHMETIC 

SCALAR  

ARITHMETIC 

Scalar multiplication algorithm:         

[k]P = P + P + é + P 

Doubling and addition of ECC points:     

2P , P + Q 

Field addition, subtraction, 

multiplication, squaring, inversion 

EXTENSION FIELD ARITHMETIC 
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The Settings 



Curve Forms 

Many curve forms are available with different advantages (fast arithmetic, certain 

resilience against some side-channel attacks, etc.) 

 

 

Most popular curves (and arguably the most efficient ones): 

 
ü  (Short) Weierstrass:  E/K:  y2 = x3 + ax + b,  where a, b Ç K. 

      

     For efficiency 

     Option 1:   a = ï3  

     Option 2:   a = 0  (j-invariant 0 curve) 

 

 
ü Twisted Edwards:  E/K:  ax2 + y2 = 1 + dx2 y2, where  a, d Ç K*,  a Í d.                 

     For efficiency  a = -1. 
  

Patrick Longa                                                                                   5                        ECC 2011 



GLV and Fast Endomorphisms 

Gallant-Lambert-Vanstone in 2001: 

 

Letôs assume we have a curve E and a prime order subgroup G on E (of order r) with an 

efficiently computable endomorphism Ã  s.t. Ã (x,y) Ÿ (®x, ̄ y), Ã(P) = ̧ P, where ̧  is a 

root of the characteristic polynomial of Ã  

 

Then, assuming the decomposition  k = k0 + k1¸  

[k]P = [k0]P + [k1](¸ P) = [k0]P + [k1] Ã(P) 

  

where  log k0 å log k1 å  İ log k   

 

Č Using simultaneous multi-scalar multiplication the number of doublings is cut to half 

 

× In settings where ki cannot be chosen randomly, ki can be computed from k by solving 

CVP on a lattice (where usually many computations can be performed off-line) 

 

× (Arguably) most efficient curve exploiting GLV:  j-invariant 0 Weierstrass curve         

y2 = x3 + b, where p = 1 mod 3 
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2-GLV on GLS Curves 

The GLV method was applicable to only a constrained set of curves untilé 

 

Galbraith -Lin -Scott in 2009:  

 
Let E be an elliptic curve over 0p , s.t. the quadratic twist Eô of E(0p2) has an efficiently 

computable homomorphism Ã (x,y) Ÿ (®x, ̄ y), Ã(P) = ̧ P   

 

· Ã arises from the p-power Frobenius map ¼ on Eô, that is Ã  = Á ¼ Á  ï1, where Á: E Ÿ Eô 

is the twisting isomorphism 

 
· ¸ 2+1 = 0 (mod r). Thus, Ã 2(P) + P = D. 

 

Remarkably, 2-dimensional GLV now applies to a large number of curves of different 

forms (e.g., Weierstrass and Twisted Edwards curves) 

 

× In settings where ki cannot be chosen randomly, GLS showed that solving the CVP     

in this case is even simpler (no lattice reduction needed) and that |ki| Ò (p+1)/ ς. 
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2-GLV on GLS Curves 

 
E.g., given E(0p), p > 3, the quadratic twist of  E(0p2) is  

 
                                              Eô/0p2 :  y2 = x3 + µ2ax + µ3b,   

 
where µ is a non-square in 0p2 , #Eô(0p2) = (p + 1 ï t)(p + 1 + t). 

 

The homomorphism is given by 

 

                                                 <(x,y) ὼȟ ώ  
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4-GLV on GLS Curves 

Galbraith-Lin-Scott also sketched how to build a 4-dim GLV on special curves 

 
Given E/0p = y2 = x3 + b, p = 1 (mod 6), the quadratic twist of  E(0p2) is  

 
                                                  Eô/0p2 :  y2 = x3 + µ6b,   

 
where µ Ç 0p12  and µ6 Ç 0p2, #Eô(0p2) = (p + 1 ï t)(p + 1 + t). 

 

The homomorphism is computed again as Ã  = Á ¼ Á  ï1, where the twisting isomorphism    

Á: E Ÿ Eô is given by Á = (µ2x, µ3y) and 

 
         Ã 4(P) ï Ã 2(P) + P = D 

 

Then, assuming the decomposition  k = k0 + k1¸  + k1¸
2 + k1¸

3 mod r   

[k]P = [k0]P + [k1](¸ P) + [k1](¸
2 P) + [k1](¸

3 P) = [k0]P + [k1] Ã (P) + [k1] Ã 2(P) + [k1] Ã 3(P)  
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4-GLV on GLS Curves 

× Using simultaneous multi-scalar multiplication the number of doublings is cut to a 

quarter! 

 

× In settings where ki cannot be chosen randomly, Hu-Longa-Xu recently showed how 

to decompose k in this case achieving the maximum bound |ki| Ò ςςὴ. 
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That was the theory and itôs nice buté 

 

    how to make it work efficiently in the real world??? 
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Field Arithmetic 
Χ ǿƛǘƘ ŦƻŎǳǎ ƻƴ 0p and 0p2 

  



Efficient Primes 

 

For high performance choose a Mersenne prime  p = 2m ï 1 

 

Č Reduction is extremely efficient (performed with a few adds, shifts and rotates) 

 

 

 

Or (if not possible) choose a pseudo-Mersenne prime  p = 2m ï c, where c is ñsmallò   

(i.e., c < 2w, w is computer wordsize) 

 

Č Reduction is still very efficient 

Č A few additional techniques can be applied and combined                                               

E.g., incomplete reduction and lazy reduction 
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Incomplete Reduction 

Yanik-Savaĸ-Koç in 2002:  
 
Given a, b Ç [0, p - 1], allow the result of a given operation to stay in the range [0, 2m - 1] 

instead of performing a complete reduction, where p < 2m < 2p - 1. 
 
Some additional observations: 
 
· If using p = 2m ï c, where c < 2w, m = n.w  (n: number of words, w: wordsize) 

 
Č Reduction after addition a + b :  discard carry bit in most significant word and then add c  
 

· If using p = 2m ï c, where c < 2w, m = n.w ï z  (z: very small integer) 
 
Č Reduction slightly more expensive after addition a + b. However, a few additions may be 
accumulated w/o reduction  
 
 

× Subtraction does not require IR (already optimal!). But other operations may benefit from 
IR:  addition between completely reduced and incompletely reduced numbers, multiplication 
by constant, division by constant,é 
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Algorithm.   Modular div2 with pseudo-Mersenne prime 

Input:  integer a Ç [0, 2m - 1],  p = 2m ï c 

Output:  (a) r = a/2 (mod p)  or  (b) a/2 Ç [1, 2m ï 1]   

(a) Complete reduction (b) Incomplete reduction 

  1.    carry = 0   1.    carry = 0 

  2.    If  a  is odd   2.    If  a  is odd 

  3.     For  i  from 0 to (n - 1) do   3.     For  i  from 0 to (n - 1) do 

  4. (carry, r[i]) Ŷ a[i] + p[i] + carry   4. (carry, r[i]) Ŷ a[i] + p[i] + carry 

  5.    For  i  from (n - 1) to 0 do   5.    For  i  from (n - 1) to 0 do 

  6.     (carry, r[i]) Ŷ (carry, r[i])/2   6.     (carry, r[i]) Ŷ (carry, r[i])/2 

  7.    borrow = 0   7.    Return r 

  8.    For  i  from 0 to (n - 1) do 

  9.     (borrow, R[i]) Ŷ r[i] - p[i] - borrow 

10.    If borrow = 0 

11.     r Ŷ R 

12.    Return r 

(r ï p) in case r = (p+a)/2 Ç [p, 2m ï (c+1)/2] 

Incomplete Reduction 
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A sum of products × Ñai bi  mod p can be reduced with only one reduction modulo p  

 

·Inner products are accumulated as ñdouble-precisionò integers, and 
·× Ñ ai bi  < 2s, where s = t.w (for efficiency), where t is number of words to 

represent a dp integer 

 

 
Č E.g., multiplication in 0p2  (c = aĬb using Karatsuba): 

      Let  a = (a0, a1)  and  b = (b0, b1) Ç 0p2 

 
 

 c0 = (a0 Ĭ b0) + ɓ (a1 Ĭ b1)                                     

 c1 = (a0 + a1) Ĭ (b0 + b1) - a0 Ĭ b0 - a1 Ĭ b1 
 

 

 

rdcn 

rdcn 

3M + 3R 

3M + 2R 

Lazy reduction in 0p2 
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· Let p = 2127 ï 2569, w = 64, t = 4 Č 2s = 2256 
· Let a0,a1,b0,b1 Ç [0, 2127 ï 1], i.e., incompletely reduced numbers 

· Let  0p2 = 0p [i]/(i
2 + 1)  (since ï1 is QNR in 0p)  

·Multiplication in 0p2 ,  aĬb = (a0, a1) Ĭ (b0, b1) :  

  

 

 

 

T0 Ŷ a0 Ĭ b0  [0, 2254] 

T1 Ŷ a1 Ĭ b1   [0, 2254] 

c0 Ŷ T0 ï T1 (mod p)  if <0 correct by adding 2128.p Č [0, 2255]. After rdcn Č [0, 2127ï2569] 

t0 Ŷ a0 + a1   [0, 2128], no rdcn 

t1 Ŷ b0 + b1   [0, 2128], no rdcn 

T2 Ŷ t0 Ĭ t1   [0, 2256]  

T2 Ŷ T2 ï T0   [0, 2256], no correction to (+) 

c1 Ŷ T2 ï T1 (mod p)  [0, 2256], no correction to (+). After rdcn Č [0, 2127ï2569] 

 

c0 = (a0 Ĭ b0) - (a1 Ĭ b1)                                     

c1 = (a0 + a1) Ĭ (b0 + b1) - a0Ĭb0 - a1Ĭb1 

Incomplete + Lazy reduction in 0p2 
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One can even eliminate a few reductionsé  

 

Generalized lazy reduction: [Aranha-Karabina-Longa-Gebotys-López 2011] easily adaptable to 
our case with a few variations 

 

· ñDelayò 0p2 reductions in point formulas 

· E.g., let T = (X1, Y1, Z1) Ç Eô(0p2) be in Jacobian coordinates.  

 To compute 2T = (X2, Y2, Z2), consider the doubling formula [Longa-Gebotys 2010]: 

 

     X2 = A2 ï 2B       

     Y2 = A(B ï X2) ï Y1
4    

      Z2 = Y1Z1, 

 
where A = 3(X1+Z1

2)(X1 ï Z1
2)/2 and B = X1Y1

2 

This formula costs 4mu + 4su + 9a + 7r (eliminating one 0p2  reduction) 

 

× More details for the case of pairings in Diego Aranhaôs talk 

Generalized Lazy Reduction for ECC  

rdcn 
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Conditional Branches 

 

· Modular operations are traditionally implemented with conditional branches 

 

     Example: addition 
 Given a, b Ç [0, p - 1], execute a + b.  If  a + b > p, then  a + b ï p 

 
· Condition is true  ~50%  in a random pattern ø worst ñnightmareò of predictors 

 

· So it is better to eliminate CBs in modular reduction (a.k.a. branchless arithmetic).  

 Two alternatives: 

 
· Using predicated move instructions (e.g., cmov in x86) 

· Using look-up tables and indexed indirect addressing 

 

 

× Basic idea: perform reduction with 0 when it is not actually required 
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Cost (in cycles) of 256-bit modular operations,  p = 2256 ï 189  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
· Cost reductions using IR in the range 7% - 41% 

· Cost reductions by eliminating conditional branches as high as 50% 

· Operations using IR are more benefited 

 

 

 Modular operation 
w/o 

CB 

with  

CB 

Cost reduction 

(%) 

w/o 

CB 

with  

CB 

Cost reduction 

(%) 

Sub 21 37 43% 16 23 30% 

Add with  IR 20 37 46% 13 21 38% 

Add 25 39 36% 20 23 13% 

Mul2 with  IR 19 38 50%  10 19 47%  

Mul2 24 38 37% 17 20 15% 

Div2 with  IR 20 36 44% 11 18 39% 

Div2 25 39 36% 18 27 33% 

Intel Core 2 Duo AMD Opteron 

IR and CBs 
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ñContiguousò dependencies: Read-after-Write (RAW) dependencies between successive 

field operations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 > addq  %rcx,%r8  

 > movq %r8, 8 (%rdx )  

 > adcq  $0,%r9  

 > movq %r9, 16 (%rdx )  

 > adcq  $0,%r10  

 > movq %r10,24(% rdx )  

            > adcq  $0,%r11  

      > Add(op1,op2,res1)   > movq %r11,32(% rdx )  

      > Add(res1,op3,res2)   > xorq  %rax,%rax  

      > movq $0xBD,%rcx  

 > movq 8(%rdi ) ,% r8  

 > addq  8(%rsi ) ,% r8  

 > movq 16(%rdi ),%r9  

 > adcq  16(%rsi ),%r9  

 > movq 24(%rdi ),%r10  

 > adcq  24(%rsi ),%r10  

 > movq 32(%rdi ),%r11  

 > adcq  32(%rsi ),%r11  

      

Field Operations Assembly instructions 

(True) Data Dependencies 

p : ñdistanceò between  instructions  

 

 

 

 

ñIdealò non-superscalar CPU:  
 

Pipeline stalls for ~(bwrite + p) cycles 

bwrite : pipeline latency of write       

          instruction 
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ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ 

 

We propose three solutions to eliminate ñcontiguousò dependencies: 

 

1. Field arithmetic scheduling  ø  execute other field operations while previous 

memory writings complete their pipeline latencies   

 

2. Merging point operations  ø  more possibilities for field operation rescheduling      

(it additionally reduces number of function calls)   

 

3. Merging field operations  ø  direct elimination of ñcontiguousò dependencies                               

(it additionally reduces memory reads/writes) 
 

 E.g.,  a ï b ï c (mod p),  a + a + a (mod p)  

               a ï 2b (mod p),  merging of  a ï b (mod p)  and  (a ï b) ï 2c (mod p) 
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ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ 
Point Doubling: (X1,Y1,Z1) Ŷ 2(X1,Y1,Z1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
               ñUnscheduledò                      Scheduled                             Scheduled and  
                                                                                                           merged DBL-DBL 

 > Sqr (Z1,t3)   > Sqr (Z1,t3)   > Sqr (Z1,t3)  

 > Add(X1,t3,t1)  D  > Sqr (Y1,t2)   > Sqr (Y1,t2)  

 > Sub(X1,t3,t3)   > Add(X1,t3,t1)        > Add(X1,t3,t1)  

 > Mult (t3,t1,t2)  D  > Sub(X1,t3,t3)    > Sub(X1,t3,t3)  

 > Mult3(t2,t1)         D  > Mult3(t3,t0 )          D  > Mult3(t3,t0)          D 

 > Div2(t1,t1)  D  > Mult (X1,t2,t4 )   > Mult (X1,t2,t4)  

 > Mult (Y1,Z1,t3 )   > Mult (t1,t0,t3 )   > Mult(t1,t0,t3)  

 > Sqr (Y1,t2)   > Sqr (t2,t0)   > Sqr (t2,t0)  

 > Mult (t2,X1,t4)  D  > Div2(t3,t1)   > Div2(t3,t1)  

 > Sqr (t1,t3)   > Mult (Y1,Z1,Z1 )   > Mult (Y1,Z1,Z1)  

 > Sub(t3,t4,X1)  D  > Sqr (t1,t2)   > Sqr (t1,t2)  

 > Sub(X1,t4,X1 )      D  > DblSub (t2,t4,X1)     D  > Sqr (Z1,t3)   

 > Sub(t4,X1,t3)       D  > Sub(t4,X1,t2)     D  > DblSub (t2,t4,X1)  

 > Mult (t3,t1,t4 )       D  > Mult (t1,t2,t4)    D  > Sub(t4,X1,t2)   D 

 > Sqr (t2,t0)        > Sub(t4,t0,Y1)    D  > Add(X1,t3,t5)  

 > Sub(t4,t0,Y1)       D  > Mult (t1,t2,t4)  

 > Sub(X1,t3,t3)  

 > Sub(t4,t0,Y1)  

 > Mult3(t3,t1)  

 > Sqr (Y1,t2)  

 > é 
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Cost (in cycles) of point doubling,  p = 2256 ï 189  

 

 

 

 

 

 

 

 

 

 

 

 

· Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, resp.   

· Less ñaggressiveò architectures are not greatly affected by ñcontiguousò dependencies  

 

Point operation ñUnscheduledò 
Scheduled and 

merged 
ñUnscheduledò 

Scheduled and 

merged 
ñUnscheduledò 

Scheduled and 

merged 

DBL 3390 3332 1115 979 786 726 

Relative reduction - 2%  - 12%  - 8% 

Estimated reduction for 

[k]P  
- 1% - 9% - 5% 

Intel Core 2 Duo AMD Opteron 

ά/ƻƴǘƛƎǳƻǳǎέ 5ŜǇŜƴŘŜƴŎƛŜǎ 

Intel Atom 
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· Similar ideas apply  

· Conditional branches can be avoided by clever choice of  p  (e.g., p = 2127 ï 1) 

 

·ñContiguousò dependencies are more expensive (n = 2 words), but more easily 

avoided by rescheduling ø  scheduling at 0p2 and 0p levels 

 
· More opportunities for merging field operations because of 0p2 / 0p interaction and 

reduced operand size (more GPRs are available for intermediate computations) 

 

 E.g., a ï 2b (mod p),  (a + a + a)/2 (mod p),  a + b ï c (mod p),   

             merging of a + b (mod p) and a ï b (mod p),  merging of a ï b (mod p) and c ï d  

                      (mod p),  and merging of a + a (mod p) and a + a + a (mod p)  

What about 0p2 arithmetic? 
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Point Arithmetic 



Jacobian Coordinates 
Faster formulas with reduced number of ñaddsò (assuming add=sub=div2=mul2):   
 

· Jacobian coordinates on short Weierstrass curve (a = ï3):  y2 = x3 + ax + b                                           
(x, y) S  (X/Z2, Y/Z3, 1),  (X : Y : Z) = {(¸ 2X, ¸ 3Y, ̧  Z): ¸  Ç 0p

*}   

  

  DBL          Č  4M + 4S + 9A   [Longa 2010] 

                mDBLADD (Z2 = 1)       Č  13M + 5S + 13A   [Longa 2007] 

    mADD (Z2 = 1)          Č  8M + 3S + 7A   [Hankerson-Menezes-Vanstone 2004] 

 

· Jacobian coordinates on short Weierstrass curve (a = 0):  y2 = x3 + b                                           
(x, y) S  (X/Z2, Y/Z3, 1),  (X : Y : Z) = {( ¸ 2X, ̧  3Y, ̧  Z): ¸  Ç 0p

*}   

  

  DBL          Č  3M + 4S + 7A   [Longa 2010] 

   mADD (Z2 = 1)          Č  8M + 3S + 7A   [Hankerson-Menezes-Vanstone 2004] 

 

 

× One may replace muls for sqrs if  1mul > 1sqr + 3ñaddsò using the transformation                  
a .b = [(a+b)2 ï a2 ï b2]/2, when a2 and b2 are known 
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Jacobian Coordinates 

Minimizing costs:   

     
· Trade additions for subtractions (or vice versa) by applying ¸  = ï1 Ç 0p

*    

· Minimize constants and additions/subtractions by applying ¸  = 2ï1 Ç 0p
*      

 

E.g., (X2,Y2,Z2) Ŷ 2(X1,Y1,Z1) using Jacobian coordinates 
 

A = 3(X1 + Z1
2)(X1 ï Z1

2),  B = 4X1Y1
2                             A = 3(X1 + Z1

2)(X1 ï Z1
2)/2,  B = X1Y1

2 

X2 = A2 ï 2B            X2 = A2 ï 2B 

Y2 = A(B ï X2) ï 8Y1
4               Y2 = A(B ï X2) ï Y1

4 

 Z2 = 2Y1Z1                 Z2 = Y1Z1 

 
· Most constants are eliminated 

· More formulas using Jacobian coordinates:  

http://patricklonga.bravehost.com/jacobian.html  
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Twisted Edwards Coordinates 
Assuming again add=sub=div2=mul2   

 

· Mixed extended/homogeneous coordinates on Twisted Edwards curve (a = ï1):         

ax2 + y2 = 1 + dx2 y2 

     (x, y) S  (X/Z, Y/Z, 1, T/Z),  T = XY/Z 

     (X : Y : Z : T) = {( ¸ X, ̧  Y, ̧  Z , ̧  Z): ¸  Ç 0p
*}     

 

  DBL        Č  4M + 3S + 6A   [Bernstein-Birkner-Joye-Lange-Peters 2008]   

                DBLADD     Č  12M + 3S + 11A   [Hisil-Wong-Carter-Dawson 2008]  

 

 

× For all these formulas, one may replace muls for sqrs if 1mul > 1sqr + 3ñaddsò 

 (however, that is not generally the case on many processors!) 

 

× (In some cases) there are some additional ops when working on a GLS curve over 0p2 

(operations with twisting parameter ¹ )  
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Point Arithmetic 
Summarizing most efficient formulas: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× Assuming that multiplying by ¹  costs about 2 adds 

Operation Coord. Curve Cost Cost  

(GLS method) 

DBL Jacobian Weierstrass,    

a = 0  

3M + 4S + 7A same 

DBL Jacobian Weierstrass,    

a = ï3   

4M + 4S + 9A 4M + 4S + 11A 

 

mADD Jacobian Weierstrass, 

a = 0, a = ï3 

8M + 3S + 7A same 

mDBLADD Jacobian Weierstrass,    

a = ï3   

13M + 5S + 13A same 

DBLADD  Jacobian Weierstrass,    

a = ï3   

16M + 5S + 13A same 

DBL homogeneous Twisted Edw. 

a = ï1   

4M + 3S + 5A 4M + 3S + 7A 

mDBLADD Mixed extended/ 

homogeneous 

Twisted Edw. 

a = ï1   

11M + 3S + 11A 12M + 3S + 16A 

DBLADD  Mixed extended/ 

homogeneous 

Twisted Edw. 

a = ï1   

12M + 3S + 11A 13M + 3S + 16A 
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Scalar Arithmetic 



Scalar Arithmetic 

Typicallyé 
                                                                                                                 

1. Conversion of scalar k to an efficient representation   

2. Precomputation (if applicable) 

3. Evaluation of [k]P using double-and-add  algorithm 

 

 

A slight variation for case with GLV methodé 

 

1. (If required) decomposition of k to get smaller integers ki  

2. Conversion of scalars ki to an efficient representation   

3. Precomputation (if applicable) 

4. Evaluation of  В [ki]<
ix(P) using interleaving, for m-dimension GLV 

       (slightly abusing notation by assuming <0x(P) = P) 
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Scalar Arithmetic (standard case)  
                                                                                                                 

1. Convert k to an efficient ñwindow-basedò representation, e.g., fractional width-w 

non-adjacent form (frac-wNAF): 
 

      k = В Ὧς, where ki Ç {0,Ñ1,Ñ3,Ñ5, é ,Ñt}  
       

· (w ï 1) ñ0ò-digits between nonzero digits 

· If  t = 2wï1ï 1, w Ó 2 Ç D  ø traditional integral window, nonzero density (w+1)ï1   

 

2. Precompute (t ï 1)/2 non-trivial points {P, [3]P, [5]P, é , [t]P}                         

Avoid inversions since are usually expensive 

· For Jacobian coord., one can use the efficient LM scheme [Longa-Miri  2008] 

· For Twisted Edwards, compute  P + 2P + 2P + é + 2P  using general additions 

 

3. Evaluate [k]P using a double-and-doubleadd  algorithm 
 

· Two main functions: merged (wï1)DBL and DBLADD  
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Scalar Arithmetic for GLV Method 

1. (If required) decompose k 

2. Use (fractional) wNAF to convert ki 

3. Precompute (t ï 1)/2 non-trivial points T0 = {P, [3]P, [5]P, é , [t]P}              
Inversion is not so expensive (case 0p2): convert to affine and exploit mixed coord. 

 

· For Jacobian coord., use LM method with one inversion, [Longa-Miri  2008]   

 

· For Twisted Edwards, compute  P + 2P + 2P + é + 2P  using general additions     

(general addition is only 1Mul more expensive than mixed addition) 

 

(If applying < is cheaper than addition) apply homomorphism é  

 

       for i = 1 to (m ï 1) do 

         Ti = <(Tiï1) 

    end for 

 

é to get [s]<i
 
(P), where s in {1, 3, 5, é , t}   

Note that [s]<(P) = <([s]P) 
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Scalar Arithmetic for GLV Method 

4. Apply interleaving [Gallant-Lambert-Vanstone 2001] 

 

Let [k]P = В [ki]<
ix(P) , 

ki = k(i,lï1)2
lï1 + k(i,lï2)2

lï2 + é + k(i,0) , 

precomputed points [s]<i
 
(P)  

 
 Q = D 

 for j = l ï 1 down to 0 do 

           Q = [2]Q 

           for i = 0 to (m ï 1) do 

             if k(i,j) Í 0,  Q = Q + [k(i,j)]<
i (P) 

        end for 

    end for 
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The Numbers 



Performance Results 

· Implementation of variable-scalar-variable-point [k]P with ~128-bit security 

·Everything in C except the underlying (extension) field arithmetic (which is in 

assembly) 

·Plugged to MIRACL library [Scott] 
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The Curves 
Six curve variants: 

· Weierstrass curve using Jacobian coordinates,  p = 2256ï189:  jac256189 

 E/0p :  y
2 = x3 ï 3x + b, with 

 #E(0p) = p + 1 ï t = 10r,  r prime   
 

· Twisted Edwards curve, p  = 2256ï 189:  ted256189 

 E/0p : ï x
2 + y2 = 1 + 358x2 y2 ,  #E(0p) = 4r,  r prime 

 

 

· 2-GLV on GLS curve using Jacobian coordinates,  p = 2127ï1:  jac1271gls 

 Eô/0p2 :  y2 = x3 ï 3µ2x + 44µ3,  µ = 2 + i Ç 0p2 ,  #Eô(0p2) = (p ï 1)2 + t2 is prime 

 

· 2-GLV on GLS curve using Twisted Edwards coord.,  p = 2127ï1:  ted1271gls 

 Eô/0p2 : ïµx2 + y2 = 1 + 109µx2 y2 ,  µ = 2 + i Ç 0p2 ,  #Eô(0p2) = 4r,  r prime  

 

· 2-GLV on j-invariant 0 Weierstrass curve using Jacobian coord.,  p = 2256ï 1539:  jac256glv 

 E/0p : y2 = x3 + 5,  #E(0p) = p + 1 ï t = r,  r prime  
 

· 4-GLV on j-invariant 0 GLS curve using Jacobian coord.,  p = 2128ï 40557:  jac128gls4 

 Eô/0p2 : y2 = x3 + µ7,  µ = 1 + i Ç 0p2 ,  #Eô(0p2) = (p ï 1)2 + t2 = r,  r prime  

0 fd63c3319814da55e88e9328e96273c483dca6cc84df53ec8d91b1b3e0237064b= ³
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GLS vs. Standard Method 

 

Performance comparison between E/0p and Eô/0p2 is complicated 

(GLS method works over a smaller field but 0p2 arithmetic involves many more 

operations)  

 

On software platforms, Galbraith-Lin-Scott only showed that in practice 2-GLV for case 
Eô/0p2 is faster than a Montgomery curve 

 

×But it would be useful to know if it is indeed faster than the ñstandardò method on the 

same curve form 
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GLS vs. Standard Method 
First we find that (M/S/A/I for 0p operations, m/s/a/i for 0p2 operations): 

 

 

 

 

 

 

Muhmmé gives an idea but still nothing clear.  

Letôs try in practice with our best techniques (results in clock cycles) 

 

 

 

 

 

 

Curve Method Operation count 

Ted1271gls, 127-bit p 2-GLV-GLS 995m + 393s + 1361a + 1i 

Ted256189, 256-bit p standard 1402M + 755S + 1579A + 1I 

Jac1271gls, 127-bit p 2-GLV-GLS 948m + 579s + 1567a + 2i 

Jac256189, 256-bit p standard 1544M + 1073S + 2491A + 1I 

Curve Method Intel Xeon 

W3530 

AMD Phenom 

II X4 940 

Intel Core i7-

2620M  

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000 

Ted256189, 256-bit p standard 250,000 213,000 196,000 

Jac1271gls, 127-bit p 2-GLV-GLS 203,000 188,000 178,000 

Jac256189, 256-bit p standard 298,000 252,000 237,000 
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GLS vs. Standard Method 

 

× 2-GLV on GLS curves compute [k]P in 0.68-0.85 the time of the standard method 

 

What about 4-GLV on GLS curves???  

 

 

 

 

 

 

 

· 4-GLV on j-invariant 0 GLS curve significantly improves 2-GLV on the same curve 

· Also great improvement in comparison with 2-GLV on GLS Twisted Edwards curve 

· But, again, improvement relative to standard 2-GLV is not clear 

Curve Method Operation count 

Jac128gls4, 128-bit p 4-GLV-GLS 648m + 408s + 830a + 2i 

Jac128gls2, 128-bit p 2-GLV-GLS 812m + 664s + 1264a + 2i 

Jac256glv, 256-bit p 2-GLV 893M + 666S + 1251A + 1I 

Ted1271gls, 127-bit p 2-GLV-GLS 995m + 393s + 1361a + 1i 
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GLS vs. Standard Method 
In practice (results in clock cycles): 

 

 

 

 

 

 

 

 

· 4-GLV on j-invariant 0 GLS curves compute [k]P in 0.77-0.85 the time of the 2-GLV 
method on a standard j-invariant 0 curve 
 

· In 2010, Ted1271gls was the fastest implementation in the literature [Longa and 
Gebotys, CHES2010]. Now Jac128gls4 improves its performance in up to 28% 

 

NOTE: implementations are being constantly improved and reported timings may differ 
from published results. For latest counts, always refer to: 

http://patricklonga.bravehost.com/speed_ecc.html#speed 

Curve Method Intel Xeon 

W3530 

AMD Phenom 

II X4 940 

Intel Core i7-

2620M  

Jac128gls4, 128-bit p 4-GLV-GLS 165,000 140,000 120,000 

Jac128gls2, 128-bit p 2-GLV-GLS 216,000 180,000 154,000 

Jac256glv, 256-bit p 2-GLV 193,000 173,000 156,000 

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000 
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Other Implementations in the Literature 
 

 

 

 

 

 

 

 

 

 

 

 

· Jac128gls4, Jac256glv and Ted1271gls are significantly faster than best 

implementations 

· Jac128gls4  runs in 0.61-0.73 the time of the very recent implementation of curve25519 

 

Implementation Method Intel Xeon 

W3530 

AMD Phenom II 

X4 940 

Intel Core i7-

2620M  

Jac128gls4, 128-bit p 4-GLV-GLS 165,000 140,000 120,000 

Jac256glv, 256-bit p 2-GLV 193,000 173,000 156,000 

Ted1271gls, 127-bit p 2-GLV-GLS 191,000 181,000 166,000 

Curve25519, 255-bit p  

[Bernstein et al., CHES2011] 

Montgomery 229,000 212,000 194,000 

gls127-ref4, 127-bit p 

[Scott] 

2-GLV-GLS 272,000 266,000 247,000 
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Prime vs. Binary Fields 
· Advances in computer architectures seem to have favoured prime fields 

· New carry-less multiplier in recent Intel processors has brought binary fields back to 
the fight; see [Taverne et al., CHES2011] 

 

 

 

 

 

 

 

 

 

· Although closer, latest advances over prime fields still give them the lead for a wide 
margin (~2x speed-up) 

· However, it is expected that an implementation of Koblitz curve over 02283 achieves 

very close performance to Jac128gls4                                                                       
(this prediction only applies to very recent Intel processors for now) 

 

Implementation Method Intel Core i7-26xx 

(GCC compiler) 

Jac128gls4, 128-bit p 4-GLV-GLS 120,000 

curve2251, GF(2251) 

[Taverne et al., CHES2011] 

Montgomery 245,000  

(225,000 with ICC) 
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