High-speed high-security signatures

Peter Schwabe
National Taiwan University

Joint work with Daniel J. Bernstein, Niels Duif, Tanja Lange and Bo-Yin Yang

September 19, 2011

ECC 2011 Rump Session
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
- Even faster batch verification: 134000 cycles/signature to verify 64 signatures of 64 messages under 64 public keys
 4 × 2.4GHz: 71000 verifications/second!
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
- Even faster batch verification: 134000 cycles/signature to verify 64 signatures of 64 messages under 64 public keys
 \(4 \times 2.4\text{GHz}: 71000\) verifications/second!
- Very fast signing: 87548 cycles (eBATS benchmark)
 \(4 \times 2.4\text{GHz}: 108000\) signs/second
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
- Even faster batch verification: 134000 cycles/signature to verify 64 signatures of 64 messages under 64 public keys
 4 × 2.4GHz: 71000 verifications/second!
- Very fast signing: 87548 cycles (eBATS benchmark)
 4 × 2.4GHz: 108000 signs/second
- Fast key-pair generation: Almost as fast as signing
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
- Even faster batch verification: 134000 cycles/signature to verify 64 signatures of 64 messages under 64 public keys
 $4 \times 2.4\text{GHz}: 71000$ verifications/second!
- Very fast signing: 87548 cycles (eBATS benchmark)
 $4 \times 2.4\text{GHz}: 108000$ signs/second
- Fast key-pair generation: Almost as fast as signing
- Signatures have only 64 bytes (no hidden slowdowns)
Ed25519 speed

- 128-bit-secure elliptic-curve signatures
- Fast signature verification: 273364 cycles on Intel Nehalem/Westmere (eBATS benchmark)
- Even faster batch verification: 134000 cycles/signature to verify 64 signatures of 64 messages under 64 public keys
 - $4 \times 2.4\text{GHz}$: 71000 verifications/second!
- Very fast signing: 87548 cycles (eBATS benchmark)
 - $4 \times 2.4\text{GHz}$: 108000 signs/second
- Fast key-pair generation: Almost as fast as signing
- Signatures have only 64 bytes (no hidden slowdowns)
- Public keys have only 32 bytes (no hidden slowdowns)
Ed25519 security

- No secret array indices, no information flow from secret data to addresses \Rightarrow no cache-timing attacks
- No secret branch conditions, no information flow from secret data to branch unit
- Collision resilience, hash collisions do not break this signature system
- Elimination of Sony-style stupidity, signing is deterministic
Ed25519 security

- No secret array indices, no information flow from secret data to addresses \Rightarrow no cache-timing attacks
- No secret branch conditions, no information flow from secret data to branch unit
- Collision resilience, hash collisions do not break this signature system
- Elimination of Sony-style stupidity, signing is deterministic

CONDITIONALLY ACCEPTED
Ed25519 security

- No secret array indices, no information flow from secret data to addresses \Rightarrow no cache-timing attacks
- No secret branch conditions, no information flow from secret data to branch unit
- Collision resilience, hash collisions do not break this signature system
- Elimination of Sony-style stupidity, signing is deterministic
Ed25519 security

- No secret array indices, no information flow from secret data to addresses \Rightarrow no cache-timing attacks
- No secret branch conditions, no information flow from secret data to branch unit
- Collision resilience, hash collisions do not break this signature system
- Foolproof session keys, signing is deterministic
Ed25519 security

- No secret array indices, no information flow from secret data to addresses \Rightarrow no cache-timing attacks
- No secret branch conditions, no information flow from secret data to branch unit
- Collision resilience, hash collisions do not break this signature system
- Foolproof session keys, signing is deterministic
Ed25519 software

- Software uses NaCl/SUPERCOP API
- Included in SUPERCOP http://bench.cr.yp.to/supercop.html
- Will also be in NaCl http://nacl.cr.yp.to/
- Public domain – use it any way you want!

http://ed25519.cr.yp.to