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Genus 2 cryptosystems have security and efficiency
comparable* with elliptic curve cryptosystems...

...but setting up secure genus 2 instances is much harder.

Computing cardinalities over prime fields:
» 256-bit elliptic curve: SEA in seconds

> 256-bit abelian surface: replace seconds with days.
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Given C : y? = f(x) of genus 2 over Fy
(q odd, Jc ordinary, absolutely irreducible).

We want to compute #Jc(Fq). Equivalently:
Compute the characteristic polynomial of Frobenius

X(T) =T —s1T*+(2+29)T> — g1 T + ¢°,
which is subject to the Weil bounds
|si] <4y/q and |[sp| <4q
and the Riick bounds

512 —4s5, >0 and s +4q9 > 2|s]|.
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Schoof’s idea:
characteristic polynomial of Frobenius acting on Jc[/] is

xe(T) :=x(T) mod (¢), so

(v* +[@))*(D) — [3:](7® + [g])m(D) + [5]7*(D) = 0
for all D in Jc[¢] (here™ denotes residue mod £).
» Compute x; for sufficiently many prime (powers) ¢

> Recover x via the CRT.

To compute xy:

1. compute generic D in Jc[/];
2. compute 7(D), (x> + [g])m(D), and (72 + [g])*(D);
3. search for [51] and [3,] s.t. the relation holds.
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Let (u, v) be a generic point of C, and D its image in Jc.

We say ¢ € End(J¢) is explicit if we can compute
polynomials dy, d1, db, g, €1, € such that

— (x2 4 di(v) do(u) ei(v) eo(u)
QS(D) = (X +WX+ dg(u)’-yi V(ez(u) + e (u )))

We call the d; and ¢; the ¢-division polynomials.
(= Cantor’s ¢-division polys for ¢ = [¢])

We say that ¢ is efficiently computable
if the ¢-division polynomials have low degree.
(ie, if evaluating ¢ is in O(1) field ops)
Note: [{]-division polys have degree in O((?)
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Computing generic elements of ker ¢ C J¢

Let ¢ be an explicit endomorphism,
(u1, v1), (u2, v2) generic points on C,
D1, D, their images in Jc.

D = (x* + aix + a0,y — (bix + by)) := D1 + D>
is a generic point of Jc.

1. Compute ¢(D1) and ¢(Dy);
2. Solve for (uy, v1, Uz, v2) in ¢(D1) = —p(D2);
3. Resymmetrizing, compute a triangular ideal /4

of relations in as, ag, by, by satisfied when D € ker ¢.

Suppose degree of ¢-division polynomials bounded by é:

» compute Iy in 0(5%) [F,-operations;
> the degree of Iy is in O(?)
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Conventional Schoof-Pila complexity:

> For each prime ¢:
1. Compute Iy in O(£9) field ops
> [{]-division polynomials have degree in O(£?)
> triangular I, has degree in O(¢*)
2. compute 7*(D), (7 + [g])7(D), and (7> + [g])*(D)
in O(¢*log q) field ops
3. Find the (5, 5,) in (Z/¢Z)? such that
(7% +[a])*(D) — [&:](n* + [g])m(D) + [5]7*(D) = 0
..O(¢) trials, each costing O(¢*) field ops
= total cost O(¢°) field ops
= Computing x, costs O(£*(¢?> + log q)) field ops
» We need y, for the O(log q) primes ¢ in O(log q)

» — y costs O(log’) field ops = O(log® q) bit ops
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Computing in Jc[¢] becomes awkward very quickly in it

genus 2; we're limited to ¢ = O(a handful of bits).

This gives us s; and s, modulo some integer M.

We finish the computation using a generic algorithm oees

such as BSGS, which runs in time
> O(¢*/*/M) when M < 8,/q, and

» O(\/q/M) when M > 89 .

This all sounds pretty bad.
Why would we want to use genus 2 again, anyway?
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Genus 2 is not just a two-dimensional analogue of genus 1
(it's much more fun than that).

Recall:

» End(Jc) ® Q = Q(n) is a quartic CM-field. resl multplication
» Complex conjugation = Rosati involution a — af

» Real quadratic subfield: Q(7 4+ 1) = Q(V/A)
for some A >0 .

» We say C has RM by O if O is a real quadratic order
isomorphic to a subring of End(Jc¢)

> isomorphism classes with RM by a fixed O form
Humbert surfaces in the 3-dimensional moduli space.




Elliptic Curves with Schoof-Elkies—Atkin

Z|r] is an unknown quadratic extension of Z.

Some primes ¢ split in Z[x].

() = (a)(@) = E[f] = E[o] © E[a]

For these primes, compute modulo deg(¢ — 1)/2
factors of division polynomials (of deg(¢? —1)/2).
Heuristically (assuming enough split primes), reduces
complexity from O(log® q) to O(log” q) bit ops.
Problem: we don't know which £ split in advance;
testing and splitting a given £ is complicated...

» Need to build & factor modular polynomials
» Extension to genus 2 is problematic

Genus 2, faster

Gaudry, Kohel,
Smith

Split primes



Our idea:

Z C Z[p] C Z[r, 7']; but Z C Z[¢] is explicit,
so we can split primes ¢ in Z[¢] instead of Z[r, ]

Split (f) = (al)(ag) — Jc[f] = Jc[al] D Jc[OLQ].
Efficient ¢ — explicit Je[a1] and Jg[az].

Compute in Je[ai] and Je[arp] faster than in Jg[4].
Hence, compute x, faster for split £.
The split ¢ are known in advance: (A/¢) = 1;

Cebotarev density = half the primes ¢ split in Z[¢].

Also, explicit Z[¢] = a better search space
(so we need fewer x, to determine x).

—> a much better complexity for computing x.
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The details:

Suppose ¢ splits in Z[¢].
For our families, the primes over £ are principal:

(0) = (a1)(a2) and  Je[f] = Je[on] ® Jefa).

We can compute generators «; = a; + bj¢

with a;, b; in O(\/4)

The [a;]- and [bj]-division polys have degree in O(¢)
— the aj-division polys have degree in O(¥)

= kernel ideals /o, have degrees in 0o(?)

(& we can compute I, in O(¢3) field operations).
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Suppose Z[r + 7] C Z[4], so

T4+ 7 =m+ ng

for some m and n in O(,/q). These determine s; and s,:

s1 = Tr(r + 7)) = 2m + nTr(¢)
5 = N(7 + n) = }(s? — n?disc(Z[g)])).

» (2 +[3])(D) = [yi]=(D) for D in Jc[a; + bid)],
where y; = (m — na;/b;) mod £.

» So we find 51 and 5, by finding y1 and y»:
ie 2x one-dimensional DLP in (Z/{(Z)
(and with fewer costly Frobenius applications).
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» For each split prime (£) = (a1)(a2)
1. Compute /a1 I, (deg O(£2)) in O(£3) field ops
2. Compute (72 + [§])(D;), m(D;)
in O(E2 log q) field ops
3. Recover m, 7 from y1,¥» in Z/{Z

such that (72 + [g])(D;) = [y~ (D;)
...O(V/¥) trials, each costing O(¢2) field ops
— total cost O((3/2) field ops
— Computing X, costs O(£2(¢ + log q)) field ops
(vs conventional O(¢*(£2 + log q)) field ops) i Complexty

» We need y, for the O(log q) split primes in O(log q)
» — xin 5(Iog q) field ops = O(Iog q) bit ops
(vs conventional O(log® q) bit ops)
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Check it out:

» Schoof for Elliptic Curves / Fq :
proven 5(Iog5 q) bit ops

» Schoof-Elkies—Atkin for Elliptic Curves / Fg :
heuristic O(log* q) bit ops

» RM Schoof-Pila for genus 2 / F, :
proven 5(Iog5 q) bit ops

So point counting has the same unconditional complexity =2
for genus 2 explicit-RM curves over F
and elliptic curves over the same IF!
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We can construct genus 2 curves with efficient RM Gaudry Kohel
using some explicit one/two-parameter families.
(Mestre, Tautz—Top—Verberkmoes, Hashimoto, Brumer...)

Consider the Tautz—Top—Verberkmoes family
C:y?=x5—5x3+5x+1t.
We have an explicit endomorphism ¢ defined by
o((u,v)) = (X° —Tux + > + 72 — 4,y —v)

Whel’e T = <5 + C5_1 (|n Fq |f q ?_ﬁ :l:2 mod 5) RM families

We have ¢ + ¢ —1 =0, so
C has efficient RM by Z[¢] = Z[1£Y3].
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A proof-of-concept implementation

Algorithm implemented in C++/NTL
(with Magma for non-critical steps).

» We did not use any small prime powers
» We did not use BSGS, just accelerated Schoof-Pila

Implementation



Cryptographic Jacobians: 256 bits

We searched for a secure genus 2 curve in the family
C:y>=x>—5x3+5x+t
over Fq with g = 2128 + 573,

Computing x(T) for a given specialization takes
about 3 Core2 core-hours at 2.83GHz;
we use the split primes £ < 131.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at
t = 75146620714142230387068843744286456025

has prime order, and so does its quadratic twist.
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But 256 bits is so two years ago...

...s0 we computed the order of a kilobit Jacobian (!)

We computed x(T) for C: y? = x> —5x3 +5x + ¢
over Fgy with g = 2512 1 1273 and

t = 29085666333787272437998261129919801749774533
00368095776223256986807375270272014471477919
88284560426970082027081672153243497592108531
6560590832659122351278.

The computation took about 80 core-days
(same setup as before);
we use the split primes £ < 419.
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The cardinality is

N = 17976931348623159077293051907890247336179
76978942306572734300811577326758055023757
37059489561441845417204171807809294449627
63452801227364805323818926258902074851818
08988886875773723732892032531588464639346
29657544938945248034686681123456817063106
48544084486938739666585942218663644225871
2684177900105119005520.

Too much, too fast
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