Genus 2, faster

Gaudry, Kohel,
Smith

Point Counting for Genus 2 Curves
with Real Multiplication

Pierrick Gaudry, David Kohel, Benjamin Smith

Benjamin Smith
INRIA Saclay-lle-de-France
Laboratoire d'Informatique de I'Ecole polytechnique (LIX)

ECC 2011, Nancy, France 21/09/2011

Genus 2 cryptosystems have security and efficiency
comparable* with elliptic curve cryptosystems...

...but setting up secure genus 2 instances is much harder.

Computing cardinalities over prime fields:
» 256-bit elliptic curve: SEA in seconds

> 256-bit abelian surface: replace seconds with days.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Given C : y? = f(x) of genus 2 over Fy
(q odd, Jc ordinary, absolutely irreducible).

We want to compute #Jc(Fq). Equivalently:
Compute the characteristic polynomial of Frobenius

X(T) =T —s1T*+(2+29)T> — g1 T + ¢°,
which is subject to the Weil bounds
|si] <4y/q and |[sp| <4q
and the Riick bounds

512 —4s5, >0 and s +4q9 > 2|s]|.

Genus 2, faster

Gaudry, Kohel,
Smith

Point counting

Schoof’s idea:
characteristic polynomial of Frobenius acting on Jc[/] is

xe(T) :=x(T) mod (¢), so

(v* +[@))*(D) — [3:](7® + [g])m(D) + [5]7*(D) = 0
for all D in Jc[¢] (here™ denotes residue mod £).
» Compute x; for sufficiently many prime (powers) ¢

> Recover x via the CRT.

To compute xy:

1. compute generic D in Jc[/];
2. compute 7(D), (x> + [g])m(D), and (72 + [g])*(D);
3. search for [51] and [3,] s.t. the relation holds.

Genus 2, faster

Gaudry, Kohel,
Smith

Point counting

Let (u, v) be a generic point of C, and D its image in Jc.

We say ¢ € End(J¢) is explicit if we can compute
polynomials dy, d1, db, g, €1, € such that

— (x2 4 di(v) do(u) ei(v) eo(u)
QS(D) = (X +WX+ dg(u)’-yi V(ez(u) + e (u)))

We call the d; and ¢; the ¢-division polynomials.
(= Cantor’s ¢-division polys for ¢ = [¢])

We say that ¢ is efficiently computable
if the ¢-division polynomials have low degree.
(ie, if evaluating ¢ is in O(1) field ops)
Note: [{]-division polys have degree in O((?)

Genus 2, faster

Gaudry, Kohel,
Smith

Division polys

Computing generic elements of ker ¢ C J¢

Let ¢ be an explicit endomorphism,
(u1, v1), (u2, v2) generic points on C,
D1, D, their images in Jc.

D = (x* + aix + a0,y — (bix + by)) := D1 + D>
is a generic point of Jc.

1. Compute ¢(D1) and ¢(Dy);
2. Solve for (uy, v1, Uz, v2) in ¢(D1) = —p(D2);
3. Resymmetrizing, compute a triangular ideal /4

of relations in as, ag, by, by satisfied when D € ker ¢.

Suppose degree of ¢-division polynomials bounded by é:

» compute Iy in 0(5%) [F,-operations;
> the degree of Iy is in O(?)

Genus 2, faster

Gaudry, Kohel,
Smith

Kernels

Conventional Schoof-Pila complexity:

> For each prime ¢:
1. Compute Iy in O(£9) field ops
> [{]-division polynomials have degree in O(£?)
> triangular I, has degree in O(¢*)
2. compute 7*(D), (7 + [g])7(D), and (7> + [g])*(D)
in O(¢*log q) field ops
3. Find the (5, 5,) in (Z/¢Z)? such that
(7% +[a])*(D) — [&:](n* + [g])m(D) + [5]7*(D) = 0
..O(¢) trials, each costing O(¢*) field ops
= total cost O(¢°) field ops
= Computing x, costs O(£*(¢?> + log q)) field ops
» We need y, for the O(log q) primes ¢ in O(log q)

» — y costs O(log’) field ops = O(log® q) bit ops

Genus 2, faster

Gaudry, Kohel,
Smith

Schoof complexity

Genus 2, faster

Computing in Jc[¢] becomes awkward very quickly in it

genus 2; we're limited to ¢ = O(a handful of bits).

This gives us s; and s, modulo some integer M.

We finish the computation using a generic algorithm oees

such as BSGS, which runs in time
> O(¢*/*/M) when M < 8,/q, and

» O(\/q/M) when M > 89 .

This all sounds pretty bad.
Why would we want to use genus 2 again, anyway?

Genus 2, faster

. Gaudry, Kohel,
Remember: i

Genus 2 is not just a two-dimensional analogue of genus 1
(it's much more fun than that).

Recall:

» End(Jc) ® Q = Q(n) is a quartic CM-field. resl multplication
» Complex conjugation = Rosati involution a — af

» Real quadratic subfield: Q(7 4+ 1) = Q(V/A)
for some A >0 .

» We say C has RM by O if O is a real quadratic order
isomorphic to a subring of End(Jc¢)

> isomorphism classes with RM by a fixed O form
Humbert surfaces in the 3-dimensional moduli space.

Elliptic Curves with Schoof-Elkies—Atkin

Z|r] is an unknown quadratic extension of Z.

Some primes ¢ split in Z[x].

() = (a)(@) = E[f] = E[o] © E[a]

For these primes, compute modulo deg(¢ — 1)/2
factors of division polynomials (of deg(¢? —1)/2).
Heuristically (assuming enough split primes), reduces
complexity from O(log® q) to O(log” q) bit ops.
Problem: we don't know which £ split in advance;
testing and splitting a given £ is complicated...

» Need to build & factor modular polynomials
» Extension to genus 2 is problematic

Genus 2, faster

Gaudry, Kohel,
Smith

Split primes

Our idea:

Z C Z[p] C Z[r, 7']; but Z C Z[¢] is explicit,
so we can split primes ¢ in Z[¢] instead of Z[r,]

Split (f) = (al)(ag) — Jc[f] = Jc[al] D Jc[OLQ].
Efficient ¢ — explicit Je[a1] and Jg[az].

Compute in Je[ai] and Je[arp] faster than in Jg[4].
Hence, compute x, faster for split £.
The split ¢ are known in advance: (A/¢) = 1;

Cebotarev density = half the primes ¢ split in Z[¢].

Also, explicit Z[¢] = a better search space
(so we need fewer x, to determine x).

—> a much better complexity for computing x.

Genus 2, faster

Gaudry, Kohel,
Smith

Split primes

v

v

The details:

Suppose ¢ splits in Z[¢].
For our families, the primes over £ are principal:

(0) = (a1)(a2) and Je[f] = Je[on] ® Jefa).

We can compute generators «; = a; + bj¢

with a;, b; in O(\/4)

The [a;]- and [bj]-division polys have degree in O(¢)
— the aj-division polys have degree in O(¥)

= kernel ideals /o, have degrees in 0o(?)

(& we can compute I, in O(¢3) field operations).

Genus 2, faster

Gaudry, Kohel,
Smith

Smaller kernels

Suppose Z[r + 7] C Z[4], so

T4+ 7 =m+ ng

for some m and n in O(,/q). These determine s; and s,:

s1 = Tr(r + 7)) = 2m + nTr(¢)
5 = N(7 + n) = }(s? — n?disc(Z[g)])).

» (2 +[3])(D) = [yi]=(D) for D in Jc[a; + bid)],
where y; = (m — na;/b;) mod £.

» So we find 51 and 5, by finding y1 and y»:
ie 2x one-dimensional DLP in (Z/{(Z)
(and with fewer costly Frobenius applications).

Genus 2, faster

Gaudry, Kohel,
Smith

New relations

Genus 2, faster

Gaudry, Kohel,

RM Schoof-Pila complexity Smith

» For each split prime (£) = (a1)(a2)
1. Compute /a1 I, (deg O(£2)) in O(£3) field ops
2. Compute (72 + [§])(D;), m(D;)
in O(E2 log q) field ops
3. Recover m, 7 from y1,¥» in Z/{Z

such that (72 + [g])(D;) = [y~ (D;)
...O(V/¥) trials, each costing O(¢2) field ops
— total cost O((3/2) field ops
— Computing X, costs O(£2(¢ + log q)) field ops
(vs conventional O(¢*(£2 + log q)) field ops) i Complexty

» We need y, for the O(log q) split primes in O(log q)
» — xin 5(Iog q) field ops = O(Iog q) bit ops
(vs conventional O(log® q) bit ops)

Genus 2, faster

Gaudry, Kohel,
Smith

Check it out:

» Schoof for Elliptic Curves / Fq :
proven 5(Iog5 q) bit ops

» Schoof-Elkies—Atkin for Elliptic Curves / Fg :
heuristic O(log* q) bit ops

» RM Schoof-Pila for genus 2 / F, :
proven 5(Iog5 q) bit ops

So point counting has the same unconditional complexity =2
for genus 2 explicit-RM curves over F
and elliptic curves over the same IF!

Genus 2, faster

We can construct genus 2 curves with efficient RM Gaudry Kohel
using some explicit one/two-parameter families.
(Mestre, Tautz—Top—Verberkmoes, Hashimoto, Brumer...)

Consider the Tautz—Top—Verberkmoes family
C:y?=x5—5x3+5x+1t.
We have an explicit endomorphism ¢ defined by
o((u,v)) = (X° —Tux + > + 72 — 4,y —v)

Whel’e T = <5 + C5_1 (|n Fq |f q ?_ﬁ :l:2 mod 5) RM families

We have ¢ + ¢ —1 =0, so
C has efficient RM by Z[¢] = Z[1£Y3].

Genus 2, faster

Gaudry, Kohel,
Smith

A proof-of-concept implementation

Algorithm implemented in C++/NTL
(with Magma for non-critical steps).

» We did not use any small prime powers
» We did not use BSGS, just accelerated Schoof-Pila

Implementation

Cryptographic Jacobians: 256 bits

We searched for a secure genus 2 curve in the family
C:y>=x>—5x3+5x+t
over Fq with g = 2128 + 573,

Computing x(T) for a given specialization takes
about 3 Core2 core-hours at 2.83GHz;
we use the split primes £ < 131.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at
t = 75146620714142230387068843744286456025

has prime order, and so does its quadratic twist.

Genus 2, faster

Gaudry, Kohel,
Smith

Cryptographic
Jacobians

But 256 bits is so two years ago...

...s0 we computed the order of a kilobit Jacobian (!)

We computed x(T) for C: y? = x> —5x3 +5x + ¢
over Fgy with g = 2512 1 1273 and

t = 29085666333787272437998261129919801749774533
00368095776223256986807375270272014471477919
88284560426970082027081672153243497592108531
6560590832659122351278.

The computation took about 80 core-days
(same setup as before);
we use the split primes £ < 419.

Genus 2, faster

Gaudry, Kohel,
Smith

Too much, too fast

Genus 2, faster

Gaudry, Kohel,
Smith

The cardinality is

N = 17976931348623159077293051907890247336179
76978942306572734300811577326758055023757
37059489561441845417204171807809294449627
63452801227364805323818926258902074851818
08988886875773723732892032531588464639346
29657544938945248034686681123456817063106
48544084486938739666585942218663644225871
2684177900105119005520.

Too much, too fast

	Genus 1 and 2
	Point counting
	Division polys
	Kernels
	Schoof complexity
	BSGS
	Real multiplication
	Split primes
	Smaller kernels
	New relations
	RM Complexity
	1 = 2
	RM families
	Implementation
	Cryptographic Jacobians
	Too much, too fast

