Point Counting for Genus 2 Curves with Real Multiplication

Pierrick Gaudry, David Kohel, Benjamin Smith

Benjamin Smith
INRIA Saclay-Île-de-France
Laboratoire d'Informatique de l'École polytechnique (LIX)

ECC 2011, Nancy, France 21/09/2011

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

Division poly

Kerne

Schoof complexity

BSGS

Real multiplication

lit primes

mailer kerneis

ew relations

M Complexit

= 2

RM familie

Implementation

Cryptographi Jacobians

Genus 2 cryptosystems have security and efficiency comparable* with elliptic curve cryptosystems...

...but setting up secure genus 2 instances is much harder.

Computing cardinalities over prime fields:

- ▶ 256-bit elliptic curve: SEA in seconds
- ▶ 256-bit abelian surface: replace seconds with days.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

vision polys

ernels

Schoof complexity

BSGS

Real multiplication

t primes

maller kernels

ow relations

M Compleyit

= 2

RM families

mplementation

. Cryptographic

Given
$$C: y^2 = f(x)$$
 of genus 2 over \mathbb{F}_q (q odd, J_C ordinary, absolutely irreducible).

We want to compute $\#J_C(\mathbb{F}_q)$. Equivalently: Compute the characteristic polynomial of Frobenius

$$\chi(T) = T^4 - s_1 T^3 + (s_2 + 2q) T^2 - q s_1 T + q^2,$$

which is subject to the Weil bounds

$$|s_1| \le 4\sqrt{q}$$
 and $|s_2| \le 4q$

and the Rück bounds

$$s_1^2 - 4s_2 \ge 0$$
 and $s_2 + 4q \ge 2|s_1|$.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

plit primes

Smaller kernels

lew relations

RM Complex

= 2

RM families

mplementation

ryptographic acobians

Schoof's idea:

characteristic polynomial of Frobenius acting on $J_C[\ell]$ is

$$\chi_{\ell}(T) := \chi(T) \mod (\ell), \quad \text{so}$$

$$(\pi^2 + [\bar{q}])^2(D) - [\bar{s}_1](\pi^2 + [\bar{q}])\pi(D) + [\bar{s}_2]\pi^2(D) = 0$$
 for all D in $J_C[\ell]$ (here $\bar{\cdot}$ denotes residue mod ℓ).

- ▶ Compute χ_{ℓ} for sufficiently many prime (powers) ℓ
- ightharpoonup Recover χ via the CRT.

To compute χ_{ℓ} :

- 1. compute generic D in $J_C[\ell]$;
- 2. compute $\pi^2(D)$, $(\pi^2 + [\bar{q}])\pi(D)$, and $(\pi^2 + [\bar{q}])^2(D)$;
- 3. search for $[\bar{s}_1]$ and $[\bar{s}_2]$ s.t. the relation holds.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

.v.s.o.. porys

Schoof complexity

SGS

Real multiplication

,...

Smaller kernels

lew relations

_ 2

RM families

Implementation

acobians

Гоо much, too fas

Let (u, v) be a generic point of C, and D its image in J_C .

We say $\phi \in \operatorname{End}(J_C)$ is *explicit* if we can compute polynomials $d_0, d_1, d_2, e_0, e_1, e_2$ such that

$$\phi(D) = \left(x^2 + \frac{d_1(u)}{d_2(u)}x + \frac{d_0(u)}{d_2(u)}, y - v\left(\frac{e_1(u)}{e_2(u)}x + \frac{e_0(u)}{e_2(u)}\right)\right).$$

We call the d_i and e_i the ϕ -division polynomials. (= Cantor's ℓ -division polys for $\phi = [\ell]$)

We say that ϕ is efficiently computable if the ϕ -division polynomials have low degree. (ie, if evaluating ϕ is in O(1) field ops)

Note: $\lceil \ell \rceil$ -division polys have degree in $O(\ell^2)$

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Division polys

. .

Schoof complexity

BSGS

Real multiplication

...

New relations

= 2

RM families

mplementation

ryptographic acobians

Computing generic elements of ker $\phi \subset J_C$

Let ϕ be an explicit endomorphism, $(u_1, v_1), (u_2, v_2)$ generic points on C, D_1, D_2 their images in J_C .

$$D = (x^2 + a_1x + a_0, y - (b_1x + b_0)) := D_1 + D_2$$
is a generic point of J_C .

- 1. Compute $\phi(D_1)$ and $\phi(D_2)$;
- 2. Solve for (u_1, v_1, u_2, v_2) in $\phi(D_1) = -\phi(D_2)$;
- 3. Resymmetrizing, compute a triangular ideal I_{ϕ} of relations in a_1, a_0, b_1, b_0 satisfied when $D \in \ker \phi$.

Suppose degree of ϕ -division polynomials bounded by δ :

- compute I_{ϕ} in $\widetilde{O}(\delta^3)$ \mathbb{F}_q -operations;
- the degree of I_{ϕ} is in $O(\delta^2)$

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

vision polys

Kernels

Schoof complexity

BSGS

eal multiplicatio

t primes

Smaller kernels

ew relations

RM Complexity

= 2

RM familie

Implementation

iryptographic acobians

Conventional Schoof–Pila complexity:

- ▶ For each prime ℓ :
 - 1. Compute I_{ℓ} in $\widetilde{O}(\ell^6)$ field ops
 - $[\ell]$ -division polynomials have degree in $O(\ell^2)$
 - triangular I_ℓ has degree in $O(\ell^4)$
 - 2. compute $\pi^2(D)$, $(\pi^2 + [\bar{q}])\pi(D)$, and $(\pi^2 + [\bar{q}])^2(D)$ in $O(\ell^4 \log q)$ field ops
 - 3. Find the (\bar{s}_1, \bar{s}_2) in $(\mathbb{Z}/\ell\mathbb{Z})^2$ such that $(\pi^2 + [\bar{q}])^2(D) [\bar{s}_1](\pi^2 + [\bar{q}])\pi(D) + [\bar{s}_2]\pi^2(D) = 0$... $O(\ell)$ trials, each costing $\widetilde{O}(\ell^4)$ field ops \Longrightarrow total cost $\widetilde{O}(\ell^5)$ field ops
 - \implies Computing χ_{ℓ} costs $\widetilde{O}(\ell^4(\ell^2 + \log q))$ field ops
- ▶ We need χ_{ℓ} for the $O(\log q)$ primes ℓ in $O(\log q)$
- ightharpoonup χ costs $\widetilde{O}(\log^7)$ field ops $=\widetilde{O}(\log^8 q)$ bit ops

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

oint countir

vision polys

ernels

Schoof complexity

BSGS

tear multiplication

lit primes

maller kernels

w relations

M Complexit

= 2

RM families

Implementation

Cryptographi acobians

Computing in $J_C[\ell]$ becomes awkward very quickly in genus 2; we're limited to $\ell = O(a)$ handful of bits).

This gives us s_1 and s_2 modulo some integer M.

We finish the computation using a generic algorithm such as BSGS, which runs in time

- $ightharpoonup \widetilde{O}(q^{3/4}/M)$ when $M<8\sqrt{q}$, and
- $ightharpoonup \widetilde{O}(\sqrt{q/M})$ when $M \geq 8\sqrt{q}$.

This all sounds pretty bad.

Why would we want to use genus 2 again, anyway?

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

Division polys

Kerneis

Schoof complexity

BSGS

Real multiplication

it primes

maller kernels

ew relations

M Complexi

= 2

RM families

Implementation

ryptographi

Remember:

Genus 2 is not just a two-dimensional analogue of genus 1 (it's much more fun than that).

Recall:

- ▶ $\operatorname{End}(J_C) \otimes \mathbb{Q} = \mathbb{Q}(\pi)$ is a quartic CM-field.
- ▶ Complex conjugation = Rosati involution $\alpha \mapsto \alpha^{\dagger}$
- ▶ Real quadratic subfield: $\mathbb{Q}(\pi + \pi^{\dagger}) \cong \mathbb{Q}(\sqrt{\Delta})$ for some $\Delta > 0$.
- ▶ We say C has RM by \mathcal{O} if \mathcal{O} is a real quadratic order isomorphic to a subring of $\operatorname{End}(J_C)$
- ▶ isomorphism classes with RM by a fixed \mathcal{O} form Humbert surfaces in the 3-dimensional moduli space.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

· ome counting

Kernels

Schoof complexit

BSGS

Real multiplication

olit primes

Smaller kernels

ew relations

M Complexit

= 2

RM families

Implementation

ryptographic acobians

Elliptic Curves with Schoof-Elkies-Atkin

- $ightharpoonup \mathbb{Z}[\pi]$ is an unknown quadratic extension of \mathbb{Z} .
- ▶ Some primes ℓ split in $\mathbb{Z}[\pi]$.
- $\bullet \ (\ell) = (\alpha)(\bar{\alpha}) \implies E[\ell] = E[\alpha] \oplus E[\bar{\alpha}]$
- For these primes, compute modulo $\deg(\ell-1)/2$ factors of division polynomials (of $\deg(\ell^2-1)/2$).
- ► Heuristically (assuming enough split primes), reduces complexity from $\widetilde{O}(\log^5 q)$ to $\widetilde{O}(\log^4 q)$ bit ops.
- ▶ Problem: we don't know which \(\ell \) split in advance; testing and splitting a given \(\ell \) is complicated...
 - Need to build & factor modular polynomials
 - Extension to genus 2 is problematic

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

ivision poly

ernels

choof complex

SGS

Real multiplication

Split primes

maller kernels

ew relations

M Complexit

= 2

RM familie

Implementation

ryptograph acobians

Our idea:

- ▶ $\mathbb{Z} \subset \mathbb{Z}[\phi] \subset \mathbb{Z}[\pi, \pi^{\dagger}]$; but $\mathbb{Z} \subset \mathbb{Z}[\phi]$ is explicit, so we can split primes ℓ in $\mathbb{Z}[\phi]$ instead of $\mathbb{Z}[\pi, \pi^{\dagger}]$
- ▶ Split $(\ell) = (\alpha_1)(\alpha_2) \implies J_{\mathcal{C}}[\ell] = J_{\mathcal{C}}[\alpha_1] \oplus J_{\mathcal{C}}[\alpha_2].$ Efficient $\phi \implies$ explicit $J_{\mathcal{C}}[\alpha_1]$ and $J_{\mathcal{C}}[\alpha_2].$
- ▶ Compute in $J_C[\alpha_1]$ and $J_C[\alpha_2]$ faster than in $J_C[\ell]$.
- ▶ Hence, compute χ_{ℓ} faster for split ℓ .
- ► The split ℓ are known in advance: $(\Delta/\ell) = 1$; Cebotarev density \implies half the primes ℓ split in $\mathbb{Z}[\phi]$.
- ▶ Also, explicit $\mathbb{Z}[\phi] \Longrightarrow$ a better search space (so we need fewer χ_{ℓ} to determine χ).
- ightharpoonup a *much* better complexity for computing χ .

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

vision polys

ernels

Schoof complexity

SGS

Real multiplication

Split primes

Smaller kernels

ew relations

M Complexity

= 2

RM familie

Implementation

ryptographi Icobians

The details:

Suppose ℓ splits in $\mathbb{Z}[\phi]$. For our families, the primes over ℓ are principal:

$$(\ell) = (\alpha_1)(\alpha_2)$$
 and $J_{\mathcal{C}}[\ell] = J_{\mathcal{C}}[\alpha_1] \oplus J_{\mathcal{C}}[\alpha_2].$

- We can compute generators $\alpha_i = a_i + b_i \phi$ with a_i , b_i in $O(\sqrt{\ell})$
- ▶ The $[a_i]$ and $[b_i]$ -division polys have degree in $O(\ell)$
- lacktriangle the $lpha_i$ -division polys have degree in $O(\ell)$
- \blacktriangleright \Longrightarrow kernel ideals I_{α_i} have degrees in $O(\ell^2)$ (& we can compute I_{α_i} in $\widetilde{O}(\ell^3)$ field operations).

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point count

ivision polys

ernels

Schoof complexity

BSG:

Real multiplica

lit primes

Smaller kernels

ew relations

M Complexi

= 2

RM familie

Implementation

Cryptographi acobians

Suppose
$$\mathbb{Z}[\pi+\pi^\dagger]\subset\mathbb{Z}[\phi]$$
, so $\pi+\pi^\dagger=m+n\phi$

for some m and n in $O(\sqrt{q})$. These determine s_1 and s_2 :

$$\begin{aligned} s_1 &= \operatorname{Tr}(\pi + \pi^{\dagger}) = 2m + n \operatorname{Tr}(\phi) \\ s_2 &= \operatorname{N}(\pi + \pi^{\dagger}) = \frac{1}{4} (s_1^2 - n^2 \operatorname{disc}(\mathbb{Z}[\phi])). \end{aligned}$$

- $(\pi^2 + [\bar{q}])(D) = [y_i]\pi(D)$ for D in $J_C[a_i + b_i\phi]$, where $y_i = (m na_i/b_i)$ mod ℓ .
- ▶ So we find \bar{s}_1 and \bar{s}_2 by finding y_1 and y_2 : ie $2\times$ one-dimensional DLP in $(\mathbb{Z}/\ell\mathbb{Z})$ (and with fewer costly Frobenius applications).

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

ivision polys

Kernels

Schoof complexity

BSGS

Real multiplication

olit primes

New relations

RM Complexit

. = 2

RM familie

Implementation

ryptographi acobians

RM Schoof–Pila complexity

- ▶ For each *split* prime $(\ell) = (\alpha_1)(\alpha_2)$
 - 1. Compute I_{α_1} , I_{α_2} (deg $O(\ell^2)$) in $\widetilde{O}(\ell^3)$ field ops
 - 2. Compute $(\pi^2 + [\bar{q}])(D_i)$, $\pi(D_i)$ in $O(\ell^2 \log q)$ field ops
 - 3. Recover \bar{m} , \bar{n} from \bar{y}_1 , \bar{y}_2 in $\mathbb{Z}/\ell\mathbb{Z}$ such that $(\pi^2 + [\bar{q}])(D_i) = [y_1]\pi(D_i)$... $O(\sqrt{\ell})$ trials, each costing $\widetilde{O}(\ell^2)$ field ops
 - \implies total cost $\widetilde{O}(\ell^{3/2})$ field ops
 - \Longrightarrow Computing χ_{ℓ} costs $\widetilde{O}(\ell^2(\ell + \log q))$ field ops (vs conventional $\widetilde{O}(\ell^4(\ell^2 + \log q))$ field ops)
- ▶ We need χ_{ℓ} for the $O(\log q)$ split primes in $O(\log q)$
- $\Rightarrow \chi \text{ in } \widetilde{O}(\log^4 q) \text{ field ops} = \widetilde{O}(\log^5 q) \text{ bit ops}$ $(vs \ conventional \ \widetilde{O}(\log^8 q) \ bit \ ops)$

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

ivision polys

Kernels

Schoof complexity

SGS

ear multiplicati

lit primes

smaller kernels

ew relations

RM Complexity

= 2

RM familie

Implementation

Cryptographi acobians

Check it out:

- Schoof for Elliptic Curves $/ \mathbb{F}_q$:

 proven $\widetilde{O}(\log^5 q)$ bit ops
- Schoof–Elkies–Atkin for Elliptic Curves $/ \mathbb{F}_q$:

 heuristic $\widetilde{O}(\log^4 q)$ bit ops
- ► RM Schoof–Pila for genus $2 / \mathbb{F}_q$:

 proven $\widetilde{O}(\log^5 q)$ bit ops

So point counting has the same unconditional complexity for genus 2 explicit-RM curves over \mathbb{F}_q and elliptic curves over the same \mathbb{F}_q !

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Counting

ivision polys

Kernels

Schoof complexity

BSGS

Real multiplicati

lit primes

maller kernels

lew relations

RM Complexi

1 = 2

RM families

Implementation

ryptograph acobians

We can construct genus 2 curves with efficient RM using some explicit one/two-parameter families. (Mestre, Tautz-Top-Verberkmoes, Hashimoto, Brumer...)

Consider the Tautz-Top-Verberkmoes family

$$C: y^2 = x^5 - 5x^3 + 5x + t.$$

We have an explicit endomorphism ϕ defined by

$$\phi((u,v)) = (x^2 - \tau ux + u^2 + \tau^2 - 4, y - v)$$

where
$$\tau = \zeta_5 + \zeta_5^{-1}$$
 (in \mathbb{F}_q if $q \not\equiv \pm 2 \mod 5$).

We have
$$\phi^2 + \phi - 1 = 0$$
, so \mathcal{C} has efficient RM by $\mathbb{Z}[\phi] \cong \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

vision polys

Kernels

Schoof complexity

SGS

leal multiplication

- P

ew relations

= 2

RM families

Implementation

iryptographic acobians

A proof-of-concept implementation

Algorithm implemented in C++/NTL (with Magma for non-critical steps).

- ▶ We did *not* use any small prime powers
- ▶ We did *not* use BSGS, just accelerated Schoof–Pila

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

roint counting

vision polys

Kernels

Schoof complexity

BSGS

Real multiplica

lit primes

maller kernels

ew relations

M Complexit

= 2

RM families

Implementation

ryptographic acobians

Cryptographic Jacobians: 256 bits

We searched for a secure genus 2 curve in the family $\mathcal{C}: y^2 = x^5 - 5x^3 + 5x + t$ over \mathbb{F}_q with $q = 2^{128} + 573$.

Computing $\chi(T)$ for a given specialization takes about 3 Core2 core-hours at 2.83GHz; we use the split primes $\ell \leq 131$.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at t=75146620714142230387068843744286456025 has prime order, and so does its quadratic twist.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and

Point counting

ivision poly

Kernels

Schoof complexity

SGS

Real multiplica

it primes

maller kernels

w relations

M Complexit

= 2

RM familie

Implementation

Cryptographic Jacobians

But 256 bits is so two years ago...

...so we computed the order of a kilobit Jacobian (!)

We computed
$$\chi(T)$$
 for $C: y^2 = x^5 - 5x^3 + 5x + t$ over \mathbb{F}_q with $q = 2^{512} + 1273$ and

t = 29085666333787272437998261129919801749774533 00368095776223256986807375270272014471477919 882845604269700820270816721532434975921085316560590832659122351278.

The computation took about 80 core-days (same setup as before); we use the split primes $\ell \leq$ 419.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 1

Point counting

ivision poly

ernels

Schoof complexity

SGS

eal multiplicati

t primes

maller kernels

w relations

M Complex

= 2

RM familie

mplementation

ryptographic acobians

The cardinality is

N=17976931348623159077293051907890247336179 76978942306572734300811577326758055023757 37059489561441845417204171807809294449627 63452801227364805323818926258902074851818 08988886875773723732892032531588464639346 29657544938945248034686681123456817063106 48544084486938739666585942218663644225871 2684177900105119005520.

Genus 2. faster

Gaudry, Kohel, Smith

Genus 1 and 2

Point counting

rision polys

ernels

choof complexi

SGS

eal multiplication

t primes

mailer kernels

ew relations

// Complexit

= 2

M families

mplementation

ryptographic Icobians