Point Counting for Genus 2 Curves with Real Multiplication Pierrick Gaudry, David Kohel, Benjamin Smith Benjamin Smith INRIA Saclay-Île-de-France Laboratoire d'Informatique de l'École polytechnique (LIX) ECC 2011, Nancy, France 21/09/2011 Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting Division poly Kerne Schoof complexity BSGS Real multiplication lit primes mailer kerneis ew relations M Complexit = 2 RM familie Implementation Cryptographi Jacobians Genus 2 cryptosystems have security and efficiency comparable* with elliptic curve cryptosystems... ...but setting up secure genus 2 instances is much harder. Computing cardinalities over prime fields: - ▶ 256-bit elliptic curve: SEA in seconds - ▶ 256-bit abelian surface: replace seconds with days. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting vision polys ernels Schoof complexity BSGS Real multiplication t primes maller kernels ow relations M Compleyit = 2 RM families mplementation . Cryptographic Given $$C: y^2 = f(x)$$ of genus 2 over \mathbb{F}_q (q odd, J_C ordinary, absolutely irreducible). We want to compute $\#J_C(\mathbb{F}_q)$. Equivalently: Compute the characteristic polynomial of Frobenius $$\chi(T) = T^4 - s_1 T^3 + (s_2 + 2q) T^2 - q s_1 T + q^2,$$ which is subject to the Weil bounds $$|s_1| \le 4\sqrt{q}$$ and $|s_2| \le 4q$ and the Rück bounds $$s_1^2 - 4s_2 \ge 0$$ and $s_2 + 4q \ge 2|s_1|$. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting Division polys Kernels Schoof complexity BSGS Real multiplication plit primes Smaller kernels lew relations RM Complex = 2 RM families mplementation ryptographic acobians #### Schoof's idea: characteristic polynomial of Frobenius acting on $J_C[\ell]$ is $$\chi_{\ell}(T) := \chi(T) \mod (\ell), \quad \text{so}$$ $$(\pi^2 + [\bar{q}])^2(D) - [\bar{s}_1](\pi^2 + [\bar{q}])\pi(D) + [\bar{s}_2]\pi^2(D) = 0$$ for all D in $J_C[\ell]$ (here $\bar{\cdot}$ denotes residue mod ℓ). - ▶ Compute χ_{ℓ} for sufficiently many prime (powers) ℓ - ightharpoonup Recover χ via the CRT. #### To compute χ_{ℓ} : - 1. compute generic D in $J_C[\ell]$; - 2. compute $\pi^2(D)$, $(\pi^2 + [\bar{q}])\pi(D)$, and $(\pi^2 + [\bar{q}])^2(D)$; - 3. search for $[\bar{s}_1]$ and $[\bar{s}_2]$ s.t. the relation holds. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting .v.s.o.. porys Schoof complexity SGS Real multiplication ,... Smaller kernels lew relations _ 2 RM families Implementation acobians Гоо much, too fas Let (u, v) be a generic point of C, and D its image in J_C . We say $\phi \in \operatorname{End}(J_C)$ is *explicit* if we can compute polynomials $d_0, d_1, d_2, e_0, e_1, e_2$ such that $$\phi(D) = \left(x^2 + \frac{d_1(u)}{d_2(u)}x + \frac{d_0(u)}{d_2(u)}, y - v\left(\frac{e_1(u)}{e_2(u)}x + \frac{e_0(u)}{e_2(u)}\right)\right).$$ We call the d_i and e_i the ϕ -division polynomials. (= Cantor's ℓ -division polys for $\phi = [\ell]$) We say that ϕ is efficiently computable if the ϕ -division polynomials have low degree. (ie, if evaluating ϕ is in O(1) field ops) Note: $\lceil \ell \rceil$ -division polys have degree in $O(\ell^2)$ Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Division polys . . Schoof complexity BSGS Real multiplication ... New relations = 2 RM families mplementation ryptographic acobians ## Computing generic elements of ker $\phi \subset J_C$ Let ϕ be an explicit endomorphism, $(u_1, v_1), (u_2, v_2)$ generic points on C, D_1, D_2 their images in J_C . $$D = (x^2 + a_1x + a_0, y - (b_1x + b_0)) := D_1 + D_2$$ is a generic point of J_C . - 1. Compute $\phi(D_1)$ and $\phi(D_2)$; - 2. Solve for (u_1, v_1, u_2, v_2) in $\phi(D_1) = -\phi(D_2)$; - 3. Resymmetrizing, compute a triangular ideal I_{ϕ} of relations in a_1, a_0, b_1, b_0 satisfied when $D \in \ker \phi$. Suppose degree of ϕ -division polynomials bounded by δ : - compute I_{ϕ} in $\widetilde{O}(\delta^3)$ \mathbb{F}_q -operations; - the degree of I_{ϕ} is in $O(\delta^2)$ Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting vision polys Kernels Schoof complexity BSGS eal multiplicatio t primes Smaller kernels ew relations RM Complexity = 2 RM familie Implementation iryptographic acobians # Conventional Schoof–Pila complexity: - ▶ For each prime ℓ : - 1. Compute I_{ℓ} in $\widetilde{O}(\ell^6)$ field ops - $[\ell]$ -division polynomials have degree in $O(\ell^2)$ - triangular I_ℓ has degree in $O(\ell^4)$ - 2. compute $\pi^2(D)$, $(\pi^2 + [\bar{q}])\pi(D)$, and $(\pi^2 + [\bar{q}])^2(D)$ in $O(\ell^4 \log q)$ field ops - 3. Find the (\bar{s}_1, \bar{s}_2) in $(\mathbb{Z}/\ell\mathbb{Z})^2$ such that $(\pi^2 + [\bar{q}])^2(D) [\bar{s}_1](\pi^2 + [\bar{q}])\pi(D) + [\bar{s}_2]\pi^2(D) = 0$... $O(\ell)$ trials, each costing $\widetilde{O}(\ell^4)$ field ops \Longrightarrow total cost $\widetilde{O}(\ell^5)$ field ops - \implies Computing χ_{ℓ} costs $\widetilde{O}(\ell^4(\ell^2 + \log q))$ field ops - ▶ We need χ_{ℓ} for the $O(\log q)$ primes ℓ in $O(\log q)$ - ightharpoonup χ costs $\widetilde{O}(\log^7)$ field ops $=\widetilde{O}(\log^8 q)$ bit ops Genus 2. faster Gaudry, Kohel, Smith Genus 1 and oint countir vision polys ernels Schoof complexity BSGS tear multiplication lit primes maller kernels w relations M Complexit = 2 RM families Implementation Cryptographi acobians Computing in $J_C[\ell]$ becomes awkward very quickly in genus 2; we're limited to $\ell = O(a)$ handful of bits). This gives us s_1 and s_2 modulo some integer M. We finish the computation using a generic algorithm such as BSGS, which runs in time - $ightharpoonup \widetilde{O}(q^{3/4}/M)$ when $M<8\sqrt{q}$, and - $ightharpoonup \widetilde{O}(\sqrt{q/M})$ when $M \geq 8\sqrt{q}$. This all sounds pretty bad. Why would we want to use genus 2 again, anyway? Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting Division polys Kerneis Schoof complexity **BSGS** Real multiplication it primes maller kernels ew relations M Complexi = 2 RM families Implementation ryptographi #### Remember: Genus 2 is not just a two-dimensional analogue of genus 1 (it's much more fun than that). #### Recall: - ▶ $\operatorname{End}(J_C) \otimes \mathbb{Q} = \mathbb{Q}(\pi)$ is a quartic CM-field. - ▶ Complex conjugation = Rosati involution $\alpha \mapsto \alpha^{\dagger}$ - ▶ Real quadratic subfield: $\mathbb{Q}(\pi + \pi^{\dagger}) \cong \mathbb{Q}(\sqrt{\Delta})$ for some $\Delta > 0$. - ▶ We say C has RM by \mathcal{O} if \mathcal{O} is a real quadratic order isomorphic to a subring of $\operatorname{End}(J_C)$ - ▶ isomorphism classes with RM by a fixed \mathcal{O} form Humbert surfaces in the 3-dimensional moduli space. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 · ome counting Kernels Schoof complexit BSGS Real multiplication olit primes Smaller kernels ew relations M Complexit = 2 RM families Implementation ryptographic acobians # Elliptic Curves with Schoof-Elkies-Atkin - $ightharpoonup \mathbb{Z}[\pi]$ is an unknown quadratic extension of \mathbb{Z} . - ▶ Some primes ℓ split in $\mathbb{Z}[\pi]$. - $\bullet \ (\ell) = (\alpha)(\bar{\alpha}) \implies E[\ell] = E[\alpha] \oplus E[\bar{\alpha}]$ - For these primes, compute modulo $\deg(\ell-1)/2$ factors of division polynomials (of $\deg(\ell^2-1)/2$). - ► Heuristically (assuming enough split primes), reduces complexity from $\widetilde{O}(\log^5 q)$ to $\widetilde{O}(\log^4 q)$ bit ops. - ▶ Problem: we don't know which \(\ell \) split in advance; testing and splitting a given \(\ell \) is complicated... - Need to build & factor modular polynomials - Extension to genus 2 is problematic Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting ivision poly ernels choof complex SGS Real multiplication Split primes maller kernels ew relations M Complexit = 2 RM familie Implementation ryptograph acobians #### Our idea: - ▶ $\mathbb{Z} \subset \mathbb{Z}[\phi] \subset \mathbb{Z}[\pi, \pi^{\dagger}]$; but $\mathbb{Z} \subset \mathbb{Z}[\phi]$ is explicit, so we can split primes ℓ in $\mathbb{Z}[\phi]$ instead of $\mathbb{Z}[\pi, \pi^{\dagger}]$ - ▶ Split $(\ell) = (\alpha_1)(\alpha_2) \implies J_{\mathcal{C}}[\ell] = J_{\mathcal{C}}[\alpha_1] \oplus J_{\mathcal{C}}[\alpha_2].$ Efficient $\phi \implies$ explicit $J_{\mathcal{C}}[\alpha_1]$ and $J_{\mathcal{C}}[\alpha_2].$ - ▶ Compute in $J_C[\alpha_1]$ and $J_C[\alpha_2]$ faster than in $J_C[\ell]$. - ▶ Hence, compute χ_{ℓ} faster for split ℓ . - ► The split ℓ are known in advance: $(\Delta/\ell) = 1$; Cebotarev density \implies half the primes ℓ split in $\mathbb{Z}[\phi]$. - ▶ Also, explicit $\mathbb{Z}[\phi] \Longrightarrow$ a better search space (so we need fewer χ_{ℓ} to determine χ). - ightharpoonup a *much* better complexity for computing χ . Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting vision polys ernels Schoof complexity SGS Real multiplication #### Split primes Smaller kernels ew relations M Complexity = 2 RM familie Implementation ryptographi Icobians #### The details: Suppose ℓ splits in $\mathbb{Z}[\phi]$. For our families, the primes over ℓ are principal: $$(\ell) = (\alpha_1)(\alpha_2)$$ and $J_{\mathcal{C}}[\ell] = J_{\mathcal{C}}[\alpha_1] \oplus J_{\mathcal{C}}[\alpha_2].$ - We can compute generators $\alpha_i = a_i + b_i \phi$ with a_i , b_i in $O(\sqrt{\ell})$ - ▶ The $[a_i]$ and $[b_i]$ -division polys have degree in $O(\ell)$ - lacktriangle the $lpha_i$ -division polys have degree in $O(\ell)$ - \blacktriangleright \Longrightarrow kernel ideals I_{α_i} have degrees in $O(\ell^2)$ (& we can compute I_{α_i} in $\widetilde{O}(\ell^3)$ field operations). Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point count ivision polys ernels Schoof complexity BSG: Real multiplica lit primes Smaller kernels ew relations M Complexi = 2 RM familie Implementation Cryptographi acobians Suppose $$\mathbb{Z}[\pi+\pi^\dagger]\subset\mathbb{Z}[\phi]$$, so $\pi+\pi^\dagger=m+n\phi$ for some m and n in $O(\sqrt{q})$. These determine s_1 and s_2 : $$\begin{aligned} s_1 &= \operatorname{Tr}(\pi + \pi^{\dagger}) = 2m + n \operatorname{Tr}(\phi) \\ s_2 &= \operatorname{N}(\pi + \pi^{\dagger}) = \frac{1}{4} (s_1^2 - n^2 \operatorname{disc}(\mathbb{Z}[\phi])). \end{aligned}$$ - $(\pi^2 + [\bar{q}])(D) = [y_i]\pi(D)$ for D in $J_C[a_i + b_i\phi]$, where $y_i = (m na_i/b_i)$ mod ℓ . - ▶ So we find \bar{s}_1 and \bar{s}_2 by finding y_1 and y_2 : ie $2\times$ one-dimensional DLP in $(\mathbb{Z}/\ell\mathbb{Z})$ (and with fewer costly Frobenius applications). #### Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting ivision polys Kernels Schoof complexity BSGS Real multiplication olit primes #### New relations RM Complexit . = 2 RM familie Implementation ryptographi acobians #### RM Schoof–Pila complexity - ▶ For each *split* prime $(\ell) = (\alpha_1)(\alpha_2)$ - 1. Compute I_{α_1} , I_{α_2} (deg $O(\ell^2)$) in $\widetilde{O}(\ell^3)$ field ops - 2. Compute $(\pi^2 + [\bar{q}])(D_i)$, $\pi(D_i)$ in $O(\ell^2 \log q)$ field ops - 3. Recover \bar{m} , \bar{n} from \bar{y}_1 , \bar{y}_2 in $\mathbb{Z}/\ell\mathbb{Z}$ such that $(\pi^2 + [\bar{q}])(D_i) = [y_1]\pi(D_i)$... $O(\sqrt{\ell})$ trials, each costing $\widetilde{O}(\ell^2)$ field ops - \implies total cost $\widetilde{O}(\ell^{3/2})$ field ops - \Longrightarrow Computing χ_{ℓ} costs $\widetilde{O}(\ell^2(\ell + \log q))$ field ops (vs conventional $\widetilde{O}(\ell^4(\ell^2 + \log q))$ field ops) - ▶ We need χ_{ℓ} for the $O(\log q)$ split primes in $O(\log q)$ - $\Rightarrow \chi \text{ in } \widetilde{O}(\log^4 q) \text{ field ops} = \widetilde{O}(\log^5 q) \text{ bit ops}$ $(vs \ conventional \ \widetilde{O}(\log^8 q) \ bit \ ops)$ Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting ivision polys Kernels Schoof complexity SGS ear multiplicati lit primes smaller kernels ew relations RM Complexity = 2 RM familie Implementation Cryptographi acobians #### Check it out: - Schoof for Elliptic Curves $/ \mathbb{F}_q$: proven $\widetilde{O}(\log^5 q)$ bit ops - Schoof–Elkies–Atkin for Elliptic Curves $/ \mathbb{F}_q$: heuristic $\widetilde{O}(\log^4 q)$ bit ops - ► RM Schoof–Pila for genus $2 / \mathbb{F}_q$: proven $\widetilde{O}(\log^5 q)$ bit ops So point counting has the same unconditional complexity for genus 2 explicit-RM curves over \mathbb{F}_q and elliptic curves over the same \mathbb{F}_q ! Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Counting ivision polys Kernels Schoof complexity BSGS Real multiplicati lit primes maller kernels lew relations RM Complexi 1 = 2 RM families Implementation ryptograph acobians We can construct genus 2 curves with efficient RM using some explicit one/two-parameter families. (Mestre, Tautz-Top-Verberkmoes, Hashimoto, Brumer...) Consider the Tautz-Top-Verberkmoes family $$C: y^2 = x^5 - 5x^3 + 5x + t.$$ We have an explicit endomorphism ϕ defined by $$\phi((u,v)) = (x^2 - \tau ux + u^2 + \tau^2 - 4, y - v)$$ where $$\tau = \zeta_5 + \zeta_5^{-1}$$ (in \mathbb{F}_q if $q \not\equiv \pm 2 \mod 5$). We have $$\phi^2 + \phi - 1 = 0$$, so \mathcal{C} has efficient RM by $\mathbb{Z}[\phi] \cong \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting vision polys Kernels Schoof complexity SGS leal multiplication - P ew relations = 2 RM families Implementation iryptographic acobians # A proof-of-concept implementation Algorithm implemented in C++/NTL (with Magma for non-critical steps). - ▶ We did *not* use any small prime powers - ▶ We did *not* use BSGS, just accelerated Schoof–Pila Genus 2. faster Gaudry, Kohel, Smith Genus 1 and roint counting vision polys Kernels Schoof complexity BSGS Real multiplica lit primes maller kernels ew relations M Complexit = 2 RM families #### Implementation ryptographic acobians ## Cryptographic Jacobians: 256 bits We searched for a secure genus 2 curve in the family $\mathcal{C}: y^2 = x^5 - 5x^3 + 5x + t$ over \mathbb{F}_q with $q = 2^{128} + 573$. Computing $\chi(T)$ for a given specialization takes about 3 Core2 core-hours at 2.83GHz; we use the split primes $\ell \leq 131$. We ran 245 trials, finding 27 prime-order Jacobians. We found that the Jacobian of the curve at t=75146620714142230387068843744286456025 has prime order, and so does its quadratic twist. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and Point counting ivision poly Kernels Schoof complexity SGS Real multiplica it primes maller kernels w relations M Complexit = 2 RM familie Implementation Cryptographic Jacobians ## But 256 bits is so two years ago... ...so we computed the order of a kilobit Jacobian (!) We computed $$\chi(T)$$ for $C: y^2 = x^5 - 5x^3 + 5x + t$ over \mathbb{F}_q with $q = 2^{512} + 1273$ and t = 29085666333787272437998261129919801749774533 00368095776223256986807375270272014471477919 882845604269700820270816721532434975921085316560590832659122351278. The computation took about 80 core-days (same setup as before); we use the split primes $\ell \leq$ 419. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 1 Point counting ivision poly ernels Schoof complexity SGS eal multiplicati t primes maller kernels w relations M Complex = 2 RM familie mplementation ryptographic acobians #### The cardinality is N=17976931348623159077293051907890247336179 76978942306572734300811577326758055023757 37059489561441845417204171807809294449627 63452801227364805323818926258902074851818 08988886875773723732892032531588464639346 29657544938945248034686681123456817063106 48544084486938739666585942218663644225871 2684177900105119005520. Genus 2. faster Gaudry, Kohel, Smith Genus 1 and 2 Point counting rision polys ernels choof complexi SGS eal multiplication t primes mailer kernels ew relations // Complexit = 2 M families mplementation ryptographic Icobians