
Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Point Counting for Genus 2 Curves
with Real Multiplication

Pierrick Gaudry, David Kohel, Benjamin Smith

Benjamin Smith
INRIA Saclay–̂Ile-de-France

Laboratoire d’Informatique de l’École polytechnique (LIX)

ECC 2011, Nancy, France 21/09/2011

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Genus 2 cryptosystems have security and efficiency
comparable* with elliptic curve cryptosystems...

...but setting up secure genus 2 instances is much harder.

Computing cardinalities over prime fields:

I 256-bit elliptic curve: SEA in seconds

I 256-bit abelian surface: replace seconds with days.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Given C : y 2 = f (x) of genus 2 over Fq

(q odd, JC ordinary, absolutely irreducible).

We want to compute #JC (Fq). Equivalently:
Compute the characteristic polynomial of Frobenius

χ(T) = T 4 − s1T 3 + (s2 + 2q)T 2 − qs1T + q2,

which is subject to the Weil bounds

|s1| ≤ 4
√

q and |s2| ≤ 4q

and the Rück bounds

s2
1 − 4s2 ≥ 0 and s2 + 4q ≥ 2|s1|.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Schoof’s idea:
characteristic polynomial of Frobenius acting on JC [`] is

χ`(T) := χ(T) mod (`), so

(π2 + [q̄])2(D)− [s̄1](π2 + [q̄])π(D) + [s̄2]π2(D) = 0

for all D in JC [`] (here ·̄ denotes residue mod `).

I Compute χ` for sufficiently many prime (powers) `

I Recover χ via the CRT.

To compute χ`:

1. compute generic D in JC [`];

2. compute π2(D), (π2 + [q̄])π(D), and (π2 + [q̄])2(D);

3. search for [s̄1] and [s̄2] s.t. the relation holds.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Let (u, v) be a generic point of C , and D its image in JC .

We say φ ∈ End(JC) is explicit if we can compute
polynomials d0, d1, d2, e0, e1, e2 such that

φ(D) =
(
x2 + d1(u)

d2(u) x + d0(u)
d2(u) , y − v

(
e1(u)
e2(u) x + e0(u)

e2(u)

))
.

We call the di and ei the φ-division polynomials.
(= Cantor’s `-division polys for φ = [`])

We say that φ is efficiently computable
if the φ-division polynomials have low degree.

(ie, if evaluating φ is in O(1) field ops)

Note: [`]-division polys have degree in O(`2)

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Computing generic elements of ker φ ⊂ JC

Let φ be an explicit endomorphism,
(u1, v1), (u2, v2) generic points on C ,

D1,D2 their images in JC .

D = (x2 + a1x + a0, y − (b1x + b0)) := D1 + D2

is a generic point of JC .

1. Compute φ(D1) and φ(D2);

2. Solve for (u1, v1, u2, v2) in φ(D1) = −φ(D2);

3. Resymmetrizing, compute a triangular ideal Iφ
of relations in a1, a0, b1, b0 satisfied when D ∈ ker φ.

Suppose degree of φ-division polynomials bounded by δ:

I compute Iφ in Õ(δ3) Fq-operations;

I the degree of Iφ is in O(δ2)

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Conventional Schoof–Pila complexity:

I For each prime `:

1. Compute I` in Õ(`6) field ops
I [`]-division polynomials have degree in O(`2)
I triangular I` has degree in O(`4)

2. compute π2(D), (π2 + [q̄])π(D), and (π2 + [q̄])2(D)

in Õ(`4 log q) field ops
3. Find the (s̄1, s̄2) in (Z/`Z)2 such that

(π2 + [q̄])2(D)− [s̄1](π2 + [q̄])π(D) + [s̄2]π2(D) = 0

...O(`) trials, each costing Õ(`4) field ops

=⇒ total cost Õ(`5) field ops

=⇒ Computing χ` costs Õ(`4(`2 + log q)) field ops

I We need χ` for the O(log q) primes ` in O(log q)

I =⇒ χ costs Õ(log7) field ops = Õ(log8 q) bit ops

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Computing in JC [`] becomes awkward very quickly in
genus 2; we’re limited to ` = O(a handful of bits).

This gives us s1 and s2 modulo some integer M.

We finish the computation using a generic algorithm
such as BSGS, which runs in time

I Õ(q3/4/M) when M < 8
√

q, and

I Õ(
√

q/M) when M ≥ 8
√

q .

This all sounds pretty bad.
Why would we want to use genus 2 again, anyway?

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Remember:

Genus 2 is not just a two-dimensional analogue of genus 1
(it’s much more fun than that).

Recall:

I End(JC)⊗Q = Q(π) is a quartic CM-field.

I Complex conjugation = Rosati involution α 7→ α†

I Real quadratic subfield: Q(π + π†) ∼= Q(
√

∆)
for some ∆ > 0 .

I We say C has RM by O if O is a real quadratic order
isomorphic to a subring of End(JC)

I isomorphism classes with RM by a fixed O form
Humbert surfaces in the 3-dimensional moduli space.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Elliptic Curves with Schoof–Elkies–Atkin

I Z[π] is an unknown quadratic extension of Z.

I Some primes ` split in Z[π].

I (`) = (α)(ᾱ) =⇒ E [`] = E [α]⊕ E [ᾱ]

I For these primes, compute modulo deg(`− 1)/2
factors of division polynomials (of deg(`2 − 1)/2).

I Heuristically (assuming enough split primes), reduces
complexity from Õ(log5 q) to Õ(log4 q) bit ops.

I Problem: we don’t know which ` split in advance;
testing and splitting a given ` is complicated...

I Need to build & factor modular polynomials
I Extension to genus 2 is problematic

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Our idea:

I Z ⊂ Z[φ] ⊂ Z[π, π†]; but Z ⊂ Z[φ] is explicit,
so we can split primes ` in Z[φ] instead of Z[π, π†]

I Split (`) = (α1)(α2) =⇒ JC[`] = JC[α1]⊕ JC[α2].
Efficient φ =⇒ explicit JC[α1] and JC[α2].

I Compute in JC[α1] and JC[α2] faster than in JC[`].

I Hence, compute χ` faster for split `.

I The split ` are known in advance: (∆/`) = 1;
Cebotarev density =⇒ half the primes ` split in Z[φ].

I Also, explicit Z[φ] =⇒ a better search space
(so we need fewer χ` to determine χ).

I −→ a much better complexity for computing χ.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

The details:

Suppose ` splits in Z[φ].
For our families, the primes over ` are principal:

(`) = (α1)(α2) and JC[`] = JC[α1]⊕ JC[α2].

I We can compute generators αi = ai + biφ
with ai , bi in O(

√
`)

I The [ai]- and [bi]-division polys have degree in O(`)

I =⇒ the αi -division polys have degree in O(`)

I =⇒ kernel ideals Iαi have degrees in O(`2)

(& we can compute Iαi in Õ(`3) field operations).

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Suppose Z[π + π†] ⊂ Z[φ], so

π + π† = m + nφ

for some m and n in O(
√

q). These determine s1 and s2:

s1 = Tr(π + π†) = 2m + nTr(φ)
s2 = N(π + π†) = 1

4 (s2
1 − n2disc(Z[φ])).

I (π2 + [q̄])(D) = [yi]π(D) for D in JC [ai + biφ],
where yi = (m − nai/bi) mod `.

I So we find s̄1 and s̄2 by finding y1 and y2:
ie 2× one-dimensional DLP in (Z/`Z)
(and with fewer costly Frobenius applications).

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

RM Schoof–Pila complexity

I For each split prime (`) = (α1)(α2)

1. Compute Iα1 , Iα2 (deg O(`2)) in Õ(`3) field ops
2. Compute (π2 + [q̄])(Di), π(Di)

in Õ(`2 log q) field ops
3. Recover m̄, n̄ from ȳ1, ȳ2 in Z/`Z

such that (π2 + [q̄])(Di) = [y1]π(Di)

...O(
√
`) trials, each costing Õ(`2) field ops

=⇒ total cost Õ(`3/2) field ops

=⇒ Computing χ` costs Õ(`2(`+ log q)) field ops
(vs conventional Õ(`4(`2 + log q)) field ops)

I We need χ` for the O(log q) split primes in O(log q)

I =⇒ χ in Õ(log4 q) field ops = Õ(log5 q) bit ops
(vs conventional Õ(log8 q) bit ops)

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Check it out:

I Schoof for Elliptic Curves / Fq :

proven Õ(log5 q) bit ops

I Schoof–Elkies–Atkin for Elliptic Curves / Fq :

heuristic Õ(log4 q) bit ops

I RM Schoof–Pila for genus 2 / Fq :

proven Õ(log5 q) bit ops

So point counting has the same unconditional complexity
for genus 2 explicit-RM curves over Fq

and elliptic curves over the same Fq!

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

We can construct genus 2 curves with efficient RM
using some explicit one/two-parameter families.

(Mestre, Tautz–Top–Verberkmoes, Hashimoto, Brumer...)

Consider the Tautz–Top–Verberkmoes family

C : y 2 = x5 − 5x3 + 5x + t.

We have an explicit endomorphism φ defined by

φ((u, v)) = (x2 − τux + u2 + τ2 − 4, y − v)

where τ = ζ5 + ζ−1
5 (in Fq if q 6≡ ±2 mod 5).

We have φ2 + φ− 1 = 0, so

C has efficient RM by Z[φ] ∼= Z[1+
√

5
2].

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

A proof-of-concept implementation

Algorithm implemented in C++/NTL
(with Magma for non-critical steps).

I We did not use any small prime powers

I We did not use BSGS, just accelerated Schoof–Pila

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

Cryptographic Jacobians: 256 bits

We searched for a secure genus 2 curve in the family
C : y 2 = x5 − 5x3 + 5x + t

over Fq with q = 2128 + 573.

Computing χ(T) for a given specialization takes
about 3 Core2 core-hours at 2.83GHz;

we use the split primes ` ≤ 131.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at

t = 75146620714142230387068843744286456025

has prime order, and so does its quadratic twist.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

But 256 bits is so two years ago...

...so we computed the order of a kilobit Jacobian (!)

We computed χ(T) for C : y 2 = x5 − 5x3 + 5x + t
over Fq with q = 2512 + 1273 and

t = 29085666333787272437998261129919801749774533
00368095776223256986807375270272014471477919
88284560426970082027081672153243497592108531
6560590832659122351278.

The computation took about 80 core-days
(same setup as before);

we use the split primes ` ≤ 419.

Genus 2, faster

Gaudry, Kohel,
Smith

Genus 1 and 2

Point counting

Division polys

Kernels

Schoof complexity

BSGS

Real multiplication

Split primes

Smaller kernels

New relations

RM Complexity

1 = 2

RM families

Implementation

Cryptographic
Jacobians

Too much, too fast

The cardinality is

N = 17976931348623159077293051907890247336179
76978942306572734300811577326758055023757
37059489561441845417204171807809294449627
63452801227364805323818926258902074851818
08988886875773723732892032531588464639346
29657544938945248034686681123456817063106
48544084486938739666585942218663644225871
2684177900105119005520.

	Genus 1 and 2
	Point counting
	Division polys
	Kernels
	Schoof complexity
	BSGS
	Real multiplication
	Split primes
	Smaller kernels
	New relations
	RM Complexity
	1 = 2
	RM families
	Implementation
	Cryptographic Jacobians
	Too much, too fast

