ECC2011 summer school

September 15-16, 2011

Point counting algorithms on
hyperelliptic curves

F. Morain

[. Introduction and motivations

Goal: build an effective group of cryptographic strength,
resisting all known attacks.

Dream: find Nechaev groups G, in which the best attack will
be O(\/#G) (existence?)

Best groups so far: hyperelliptic curves of genus g, with size

~ g¢* over some finite field IF,. Typical size
g8 o 2160200 ~ 1(50~—60,

» Miller, Koblitz (1986): elliptic curves are suggested for
use, following the breakthrough of Lenstra in integer
factorization (1985).

» Koblitz (1988): hyperelliptic cryptosystems.

In this series of talks

» Put the emphasis on elliptic curves, but take a more
general view from time to time; g > 1 is the next case;
sometimes, hec’s yield info on ec’s.

» Consider any base field, with some preference for large
prime fields, or [F,»; few places where it really matters.

General overview of the lectures

I. Point counting algorithms: basic approaches.
[l. Point counting algorithms: elaborate methods.

Bibliography and links

» A course in algorithmic algebraic number theory (Cohen);

» The arithmetic of elliptic curves (Silverman);

» Elliptic curve public key cryptosystems (Menezes);

» Elliptic curves in cryptography (Blake, Seroussi, Smart);

» Advances in Elliptic curves in cryptography (Blake,
Seroussi, Smart);

» Handbook of Elliptic and Hyperelliptic Curve
Cryptography (Cohen, Frey);

» Algebraic aspects of cryptography (Koblitz, appendix on
hec by Menezes, Wu, Zuccherato).

ECC2011 summer school

September 15, 2011

Point counting algorithms:
|. basic approaches

F. Morain

Plan

I. Elements of theory.
Il. Particular curves.
I1l. Generic methods.

IV. Schoof’s algorithm.

|. Elements of theory

Let C be a plane smooth projective curve of genus g with
equation F(X, Y) = 0 with coefficients in K, char(K) = p.
Conic: (genus 0) x> +y> = 1.

Elliptic curve: (genus 1) y*> = x> +x + 1.

Hyperelliptic curve: (genus g) y> = x**! + ... (or in some
cases y> = %12 4 ...).

Rem. To simplify things, we assume that C is “at most”
hyperelliptic (no C,; or Xo(N)).
Def. C(K) = {P = (x,y) € K2, F(x,y) = 0}.

Thm. When g < 1, there is a group law on C(K). When g > 1,
there is a group law on the jacobian of the curve.

Elliptic curves

E:Y>+ai XY +a3¥Y =X + axX? + asX + ag

bz = af +4a2,b4 = 2614 + a1a3,b6 = a% +4a6,
_ 2 2 2
bg = ajae + 4arae — ajazas + azaz — aj,

c4 = b3 — 24by, cg = b3 + 36byby — 216bg,

A = —b3bg — 8b3 — 27bZ + 9bybsbs # 0

3
C
i(E) — “q
JE) =«
Whenp = 2: Y2 + XY = X° + aoX? + ag, j = 1/as.
When p > 3: Y2 = X3 + AX + B, A = —16(4A3 + 27B2).
E(K), tangent-and-chord (&, Og), multiplication by n noted
[n]P.

Group law

P3;=P 3P
KP=P&® --®P
———

k times

Hyperelliptic curves

Y+ h(x)y = f(x) = 2 4

IMPORTANT WARNING:
For almost all topics (properties, algorithms, etc.),
g > 1 is exponentially more difficult than g = 1.

Representing Jac(C)

1. Mumford: An element (= a divisor) of Jac(C) is

D = (u(), (), deau) < g, de(v) < deg(u).
defined by (If P; = (Xi,yi)),

8

u(z) = H(z —xi), and v(x;) = y;, Vi.

i=1
Rem. If D = (u(z),v(z)), then —D = (u(z), —v(z)).

Group law: Cantor’s algorithm (or special formulae for fixed g
ala Spallek, Harley, Nagao).

2. Theta representations: Chudnovsky& Chudnovsky, Gaudry,
..., Robert, Cosset.

Cardinality

K =TF, = Fy; N, = #C(K,) where [K, : K] = r:
Tr
Z(T)=exp | Y N.— | .
Ex. P'(F,) = {(x0,x1) # (0,0) € F5, }/ ~.
#PYF,)=14¢"

1
(1-17)(1 —qT)

Z(T) =

Weil’'s theorem

Thm. (Weil) Z(T) € Q[T]

L(7)
(1—1)(1 - q7)

Z(T) =

L(T)=1+aT+--- +qu2g, a; € L
(”) Mg = qg‘iai foro<i< g;
(Ill) if L(T) = H(l — a,T), then Q01 = ¢ and |ai| — \/q

Thm. #Jac(C) = L(1).

Coro. ‘#C — (q + 1)| < 2g\/§;
(Vg — 1)* < #Jac(C) < (/g + 1)%.

(-torsion
Def. Jac[n] = {P € Jac(K), [n]P = O,}.

Thm. If (n, char(K)) = 1, Jac[n] ~ (Z/nZ)%; Jac[p’] = (Z/pZ"),
0<k<g.

Rem. In general k = g (ordinary curves); when g = 1, the case
k = 0 corresponds to supersingular curves.

Coro. Jac(C)/Kis at most C; x Cy X - -+ X Cag.

For ¢ = 1, this means E is cyclic (very often) or C; x C,
(rarely).

Division polynomials for elliptic curves

Take E : y> = x> + Ax + B:

(X, Y) = <¢n(X7 Y) wa(X,Y) >

Un(X,Y)? " (X, Y)?

d)n = Xd}rzl - @Z}nJrIT/)nfl
4Yw, = ¢n+2¢571 - wn—Zw,%Jrl
Gy Vant1, Yo/ (2Y), wont1/Y, wo, € Z[A, B, X]

Rem. When g > 1, one can define analogous division
polynomials — as a matter of fact, division ideals — (cf. Cantor).

[(X, Y) for n odd
Sn(X) = { a(X,Y)/(2Y) for n even

fai=-1, fo=0, fi=1, fa=1
f(X,Y) =3X* + 6AX? + 12BX — AZ
fa(X,¥) = X® 4 5AX* + 20BX® — 5A°X?
—4ABX — 8B* — A°
fon = fu(fuaafir—1 = fa—ofiri1)

f _ foiofs —f,13+1fn,1(16Y4) if n is odd
e (16Y*)fpiof — f7, 1 fu—1 otherwise.

[(®—1)/2 ifnisodd
d%W@»—{mt4y2mmmm.

Thm. P = (x,y) point of order ¢ in E(K)
<= [2]P = Og or fi(x) = 0.

[l. Particular curves

A) Supersingular curves

Elliptic curves: Es.t. #E =g+ 1 —c¢, p| c (notevery c, all is
known).
For instance: whenn =2m+ 1, ¢ = 2"

E Cn

Y+vy=Xx° 0
P+Y=X+X | —(2/n)v2q
VP+Y=X+X+1]| (2/n)v2q

(See A. Menezes and S. Vanstone, Utilitas Math.,
38:135-153, 1990)
Pb: subject to the MOV reduction (see also Frey, Ruck).

g > 1: can be generalized, but reductions still apply (see also
Galbraith for security evaluation).

B) CM curves

g=1:
Thm. (Katre) If p = x> 4 4y? with x = 1 mod 4 and a # 0 mod p,
then E : Y? = X3 + aX has cardinality

2x if(a/p)a =1,
p+1—2< =2x if(a/p)s=—1,
—4y otherwise with y s.t. 2y(a/p)s = x.

There are 13 cases of curves defined over Q having such
properties; in general, 4p = A> + DB?, #E = p + 1 — A: basis
for primality proving with elliptic curves (ECPP, Atkin, M.).

g>1:

Spallek, Weng (g = 2); Buhler-Koblitz; Duursma-Sakurai;
Chao, Matsuda, Nakamura, Tsuijii; etc., etc.

= M. Streng’s talks.

Pb: too much structure?

C) Misc

» Weil-Koblitz: Build curves over F, for ¢ small and use
Jac(C)/F . ECDL might be a little easier.

» Weil descent: Start from ec’s to build hec’s (Smart et al.).

> Y2 = X%t 4 gXx, ¥? = X%+ 4 4 (Jacobsthal sums:
Furukawa/Kawazoe/Takahashi 2003,
Haneda/Kawazoe/Takahashi 2005).

» Satoh: Y2 = X° + uX?® + vX as covering of elliptic curves.

lIl. Generic methods

Input: a finite abelian group (G, +) with #G < B.
Output: #G together with a proof (factors of #G + structure
with generators; for curves, use pairings).

1. Enumeration: O(#G) if one has a means of enumerating
G...

2. Use Lagrange’s theorem: for random x € G, find w =

order of x. Deduce from this the order of G (take care to small
orders, group structure with SNF, etc.; see Cohen). Relatively
easy when G is cyclic and the number of generators important.

Easy method: try increasing value of w: O(w) < O(B), O(1)
space, deterministic.

Shanks’s baby steps/giant steps method

Write m = my + mb for some b, 0 < my < b, 0 < m; < B/b and
write
[m]x = 0 <= [m;]([—b]x) = [mo]x.

1. baby steps: precompute B = {[mo]x,0 < my < b};
2. giant steps: find all m; s.t. [m;]([—b]x) = [mo]x for some my.

Cost: b + B/b minimized with » = \/B. Time and space are
O(V/B) group operations, assuming membership testing is
O(1) (hashing), deterministic.

Rem. can be modified when A < #G < B, yielding a method
in O(vVB —A).
Using kangaroos (Stein-Teske, Gaudry-Harley,

Matsuo-Chao-Tsuijii): probabilistic method in O(v/B — A) time
and O(1) space.

Application to elliptic curves

» Enumeration: find all x € F, s.t. f(x) is a square.

» Lagrange: [q + 1]P = [fc]P for 0 < ¢ < 2,/3.
Rem. If ord(P) is large enough, then

#{ce[-2vg.2vallg+1— P =05} =1

and we can bypass the structure problem (Mestre).
» Kangaroos: idem.

» Shanks: we can do slightly better finding ¢ and not w.
Write ¢ = no +miW, 0 <ng < W, |n1| < 2,/q/W. Write

[g+ 1 —nolP = [£n][W]P,0 < ny < 2\/q/W

Cost: W = /2,/q, 80 0(2,/2,/7).

Application to hyperelliptic curves

L(l) =1-3 +‘"+(—1)gsg+(—1)g+lqsg,1 _{_..._qg—ls1 +qg’

A) Enumeration

g = 2: compute N;(C) and N,(C) and deduce
s1=q+1=Ni(C), s2= (st +Nao(C) — (¢* + 1)) /2.

g=3.s53= (s? — 35150 — N3 +¢° + 1)/3.

Prop. Method in O(¢?).

B) Lagrange

Hasse-Weil gives

w=(/q+ 1)% — (Vq - 1)% = 4gq28—1)/2 4 0(q(2g*3)/2) (for
fixed g, ¢ — +00).

Prop. Method in 0(¢(*¢~1)/2) (for fixed g).
Shanks/Kangaroos: 0(q(%¢~1)/4) (for fixed g).

Rem. Some improvements are possible (partial information —
truncating L(1), etc.).

IV. Schoof’s algorithm

The Frobenius endomorphism
Ordinary:

—
—

L Al

¢: CK) — C(K)
(X,Y) — (X7,Y9)

Fundamental thm. The minimal polynomial x(7') of ¢ is the
reciprocal of L(T'). Moreover #Jac(C)/F, = x(1).

Consequence: computing #Jac(C)/F, boils down to
computing x (7).

g = 1:for Ewith x(T) = T> — ¢T + q, || < 2,/3.
¢ restricted to E[/] satisfies:

©* —cp+g=0mod ¢
so we can find ¢, = ¢ mod ¢ such that
(X7, Y7) & [q](X, ¥) = [e] (X, ¥9)

in K[X, Y]/(E,f,(X)) and use CRT once [[¢ > 4,/4. Yields a
O(log® ¢) deterministic algorithm.

Pb. deg(f;) = O(¢?).

g > 1: general algorithm by Pila (1990), but impossible to
implement; Kampkdtter (1991) for any hyperelliptic, with
precise equations for g = 2 (uses Grébner bases). More
tomorrow!

ECC2011 summer school

September 15-16, 2011

Point counting algorithms:
ll. elaborate methods

F. Morain

Plan

I. What we saw yesterday.

. Isogenies and point counting: Elkies, Atkin, Couveignes,
Lercier.

[ll. Satoh’s algorithm.
IV. Generalization to genus 2.

V. Generating cryptographically strong elliptic curves.

|. What we saw yesterday

p: CK) — C(K)
(X,Y) — (Xx7,Y9)

Fundamental thm. The minimal polynomial x(7') of ¢ is the
reciprocal of L(T'). Moreover #Jac(C)/F, = x(1).

Consequence: computing #Jac(C)/F, boils down to
computing x (7).
g = 1:for Ewith x(T) = T? — ¢T + q, || < 2,/4.
o restricted to E[/] satisfies:
©? —cp+g=0mod !
so we can find ¢, = ¢ mod /¢ such that
(X7, ¥7) @ [g](X, Y) = [ed] (X7, ¥)

in K[X, Y]/(E, f«(X)) and use CRT once [[¢ > 4,/4. Yields a
O(log® ¢) deterministic algorithm.
Pb. deg(f;) = O(¢?).

ll. Isogenies and point counting

A) Elements of theory
Def. ¢ : E — E*, ¢(Og) = Og-; induces a morphism of groups.

First examples
1.
Ax Bi

ke = (%)
2. [i](X,Y) = (=X,iY)onE: Y? = X> — X.
3. p(X,Y) = (X1,Y7),K=TF,.
Thm. (dual isogeny) There is a unique b:E*—E, pogp= [m],
m = dego.

P ®

E*

N | ®

E

Isogenies and subgroups

Thm. If F is a finite subgroup of E, then there exists ¢ and E*
s.t.
¢ E—E"=EJF, ker(¢)=F.

Ex. E :y> = x> +ax’ + bx, F = {(0,0));

E*: Y2 =X —2aX* + (a® — 4b)X,
2 2
y- y(b—x7)
¢:(X,y)'_> <]C27 xz >

More generally: Vélu’s formulas give

oxn = (

(case deg¢ odd.)

Application to point counting

Suppose F is a subgroup of order /¢ of E:

E*

~>

[4]
E
I(X,Y) = (;) Jdeg(H) = (0 = 1)/2

ker(I) C E[{] = H(X) | fo(X) in K[X].
Schoof’s algorithm on a degree O(¢) polynomial.

Pb. When does such an F exist over K?

B) Atkin and Elkies

Consider ¢ : (X,Y) — (X4,Y%) and its restriction ¢, to E[/]:

07— cpr+q=0,
A=c%— 4q.
If (A/¢) = +1, then over Fy,
Mat(p/) ~ ()(\)1)(\)2 > & 3JF, p(F) = F & Fis a cyclic

subgroup of order ¢, defined over K.
Clon. If (A/¢) = +1, f; has a factor of degree (¢ — 1)/2.

Pb. How do we know that (A/¢) = +17?

Modular polynomials

Thm. 3¢,(X,Y) € Z[X, Y] s.t. E and E* are (-isogenous over K
only if ®,(j(E), j(E*)) = 0.

This polynomial comes from the theory of elliptic curves over
C: for (1) > 0, ®(j(7),j(7/£)) = 0.

There are O(¢?) integer coefficients of size O(¢) = &, will
occupy O(£3) bits. This yields a naive method for computing
®, using linear algebra.

Ex.
(X, Y) = X° + X (sz + 1488 Y — 162000)

X (1488 Y2 + 40773375 Y + 8748000000)

+Y? — 162000 Y* + 8748000000 Y — 157464000000000.

Over finite fields

Thm. E/F,:

. () () 1A = +1.
TGRS R 7

and s is the order of A\;/X,.

Clon. (A/¢) = +1 iff ®4(X,j(E)) has two distinct roots over K.

Atkin’s 1986 idea: use the splitting of ¢, to deduce
information on r and combine it via a clever match and sort
algorithm (see also Joux/Lercier).

Elkies’s algorithm (circa 1989)

repeat
1. factor ¢,(X, j(E)) over K.
2. iftype = (1)(1)(s)--- (s):
2.1 build E*;
2.2 build I;
2.3 find ¢ mod /;

until [, 4000 ¢ > 4/

Thm. O(log* ¢) operations over I, probabilistic.

Computing (E*, 1)

» use the theory of elliptic curves and lattices over C
(Weierstrass g function); rational formulas for E*;

» computing / takes O(M(¢)) operations given E, E* and the
trace of the polynomial (Bostan/M./Salvy/Schost,
Lercier/Sirvent);

» in small characteristic, this is more difficult: see
Couveignesl+ll, DeFeo; Lercier;

» Cf. D. Robert’s talks for more.

Rem. Isogenies no longer used for computing cardinalities for
p small, but used for computing modular polynomials
(Broker/Lauter/Sutherland), and enters some crypto primitives
(cryptosystems, discrete log attacks, isogeny walks, etc.).

Modular polynomials

Historically: precompute huge tables of ¢, over Z and
reduce them on the fly. Convenient for crypto targets.

» Find families of “smaller” modular polynomials (Weber
functions, Atkin’s laundry method — theta functions, Muller
with Hecke operators, etc.); e.g.,
®,[j'/3] = U? — V2U? 4 495 VU + V3 — 54000.

» Computing ®, given f:

» series expansions to recover coefficients;

» floating point computations on huge complex numbers;
best method is Enge, Dupont using
evaluation/interpolation for O(¢?) operations;

» alternative p-adic approach by Broker.

» Vercauteren: special case of p = 2 enables many tricks
that reduce the computations.

Modern times: directly compute ¢, over the ring we’re
interested in. Best algorithm uses CRT and isogeny
volcanoes. (Broker/Lauter/Sutherland) in time O(¢3).

Point counting records
FM; then AEnge/PGaudry/FM (first home made; NTL)

what | 500dd | 1000dd | 1500dd | 2005dd | 2500dd
when | 1995 2005(")

XP 6h 134h 35d 133d 224d
Total 10h 180h 77d 195d 404d

A. Sutherland (07/2010): p = 16219299585 x 216612 _ 1
(5000dd),

Approximate timings on AMD Phenom II 3.0 GHz cores

Phi_n(X,j(E)) mod p 32 CPU days
X"p mod Phi_n (X, j(E)) 995 CPU days
Elkies kernel polynomial h (X) 3 CPU days
Y*p mod h and derive X”p mod h 326 CPU days
eigenvalue using BSGS 22 CPU days

Every day life (crypto)

» Optimal parameters for crypto size available since 1995
(Lercier+M.).

» well understood algo + implementation (see green books
for convenience).

» Implementations available in MAGMA, pari, ...

» An exercise in NTL, or Sage. Ditto for modular
polynomials, for which tables exist.

lll. Satoh’s algorithm

Def. Z, ring of p-adic integers (xi,x2,...,x,,...) S.t.

X, € Z/p"Z and x,+1 = x, mod p". Denote by 7 : Z, — F,
sending x to x;.

Def. Let ¢ = p" and f(¢) € Z,[t] s.t. w(f) is irreducible in F),[z].
Then Z, = Z,[1/(f(1))-

An element of Z, is A = a,_1#~' + -+ - + ap with a; € Z,; Z,
contains Z, as a subring.

m(A) =D m(a)r.

Prop. Let o be the little Frobenius sending x in IF, to x”. There
is a canonical way to lift o to X : Z;, — Z,.

Extend o to points o(x,y) = (¢(x),o(y)) and to curves:
o(E) = [o(a;)], so that if P € E(K), then o(P) € o(E)(K).

Thm (Lubin-Serre-Tate) Let E/FF, with j = j(E) € F, — F 5.
There is a unique J in Z, s.t.

®p(T,2(T)) =0,

7(J) = j; J is the invariant of the canonical lift £ of £ and
End(€) = End(E).

Isogeny cycles:

zrfl z)‘72 > >
o A R e
Im Im lm

Or—1 Or—2 g [of
Ey —E,_,—. .- 2L E 25 E,

Prop. y =ogooy0---00, 1, F=Xp0Xj0---0%, 1.
Thm. Tr(p) = Tr(F).

Computing Tr(F) (1/2)

Use the dual of Frobenius to get another isogeny cycle
amenable to computations:

29 2 2, I

& — & — - —E—&
m lm

o o Gr_n Gy
Ey 2 FE 2. Z3E,_ 22E,

Prop. ¢ =6, 106, 5004 (idem for F) and also
Tr(F) = Tr(F) = Tr(p).

Computing Tr(F) (2/2)

Let 7 (resp. 7;) denote the local parameter of £ (resp. &;).

F(r)= Z e

k>1

Prop. (Satoh) Tr(F) = ¢1 + g/ci.

d—1
1 = H 8i
i=0

where (Vélu’s formulas again)

N~

Yi(mi) = gimi + O(77)

Satoh’s algorithm in brief

1. Compute the curves Ey, Ei, E,_; and their invariants j;.

2. Lift all the j;’s simultaneously by a Newton iteration to get
Ji:

O((x:)) = (Pp(x0,x1), Pp(x1,%2), - - -, Pp(xr—1,%0))

as
(%) — (%) = ((DO)'©)((x4)).
Lift each E; coefficient by coefficient.
Lift the p-torsion subgroup of E;.
Compute the 3;’s.
6. Compute the trace.

Thm. (Satoh-FGH) For fixed p, Satoh-FGH requires O(r?)
memory and O(r**¢) bit-operations.

ok~ w

IV. The situation in genus 2

» Division polynomials: Cantor.

» Schoof/Pila:
» random curves: Gaudry/Harley (p ~ 2°'), Gaudry/Schost
(p ~ 2%2), Pitcher, Gaudry/Schost (2010): O((logp)’)
operations in F, (record p = 2'%7 — 1: 1000 CPU hours).
» easy Real Multiplication: Gaudry/Kohel/Smith (2011) give
a O((logp)*) algorithm (record: p ~ 25'2; 128-bit takes 3
hours).

» Satoh’s algorithm: LST valid. Need modular equation.
Very fast for small p.

» Isogenies: Vélu's formulas for maximally isotropic kernels
(Lubicz/Robert). See D. Robert, G. Bisson, R. Cosset
(AVIsogenies).

» Modular polynomials: not usable yet.

Modular polynomials when g = 2

» Gaudry + Schost: the algebraic alternative is generic
(Z0)

» total degreeisd = (¢* —1)/(¢ — 1);

» number of monomials is O(¢'?);

» can do ¢ = 3: 50k but a lot of computing time (weblink still
active);

» use its factorization patterns a la Atkin to speedup
cardinality computations.

» The classical modular approach:

» Poincaré — Siegel (dim 2g);

» replacej by (ji,/2,j3) = triplet of modular polynomials,
coefficients are rational fractions in j;’s;

» Dupont (experimental conjectures proven more recently
by Bréker+Lauter): stuck at ¢ = 2 with 26.8 Mbgz (just the
beginning of ¢ = 3); uses evaluation/interpolation again;
see Goren/Lauter.

V. Generating cryptographically strong curves

I, with large p or F,. with n prime (Weil descent, see Menezes
& Qu); subgroups of large prime order.

» Supersingular curves: too much structure (?).

» CM curves: quite efficient for g = 1 or g = 2, but who
knows?

» Fixed curves: The NIST curves (?).
» Random curves:

» g = 1: use SEA for large p, Satoh for p = 2. Very efficient
when combined to the early-abort approach in Lercier’s
EUROCRYPT'97 article. Experiments conducted by FGH
combining SEA and Satoh show that it takes 5 min on
Alpha 750 MHz to build a good curve over ;.

» g = 2 begins to be efficient (in particular RM).

» g > 2: out of reach right now.

