
ECC2011 summer school
September 15–16, 2011

Point counting algorithms on
hyperelliptic curves

F. Morain

I. Introduction and motivations

Goal: build an effective group of cryptographic strength,
resisting all known attacks.

Dream: find Nechaev groups G, in which the best attack will
be O(

√
#G) (existence?)

Best groups so far: hyperelliptic curves of genus g, with size
≈ qg over some finite field Fq. Typical size
qg ≈ 2160−−200 ≈ 1050−−60.

I Miller, Koblitz (1986): elliptic curves are suggested for
use, following the breakthrough of Lenstra in integer
factorization (1985).

I Koblitz (1988): hyperelliptic cryptosystems.

In this series of talks

I Put the emphasis on elliptic curves, but take a more
general view from time to time; g > 1 is the next case;
sometimes, hec’s yield info on ec’s.

I Consider any base field, with some preference for large
prime fields, or F2n ; few places where it really matters.

General overview of the lectures

I. Point counting algorithms: basic approaches.
II. Point counting algorithms: elaborate methods.

Bibliography and links
I A course in algorithmic algebraic number theory (Cohen);
I The arithmetic of elliptic curves (Silverman);
I Elliptic curve public key cryptosystems (Menezes);
I Elliptic curves in cryptography (Blake, Seroussi, Smart);
I Advances in Elliptic curves in cryptography (Blake,

Seroussi, Smart);
I Handbook of Elliptic and Hyperelliptic Curve

Cryptography (Cohen, Frey);
I Algebraic aspects of cryptography (Koblitz, appendix on

hec by Menezes, Wu, Zuccherato).

ECC2011 summer school
September 15, 2011

Point counting algorithms:
I. basic approaches

F. Morain

Plan

I. Elements of theory.

II. Particular curves.

III. Generic methods.

IV. Schoof’s algorithm.

I. Elements of theory

Let C be a plane smooth projective curve of genus g with
equation F(X,Y) = 0 with coefficients in K, char(K) = p.

Conic: (genus 0) x2 + y2 = 1.

Elliptic curve: (genus 1) y2 = x3 + x + 1.

Hyperelliptic curve: (genus g) y2 = x2g+1 + · · · (or in some
cases y2 = x2g+2 + · · ·).

Rem. To simplify things, we assume that C is “at most”
hyperelliptic (no Cab or X0(N)).

Def. C(K) = {P = (x, y) ∈ K2,F(x, y) = 0}.

Thm. When g ≤ 1, there is a group law on C(K). When g > 1,
there is a group law on the jacobian of the curve.

Elliptic curves

E : Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4,

c4 = b2
2 − 24b4, c6 = b3

2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 6= 0

j(E) =
c3

4
∆

When p = 2: Y2 + XY = X3 + a2X2 + a6, j = 1/a6.
When p > 3: Y2 = X3 + AX + B, ∆ = −16(4A3 + 27B2).
E(K), tangent-and-chord (⊕, OE), multiplication by n noted
[n]P.

Group law

P3 = P1 ⊕ P2

[k]P = P⊕ · · · ⊕ P︸ ︷︷ ︸
k times

Hyperelliptic curves

y2 + h(x)y = f (x) = x2g+1 + · · ·

IMPORTANT WARNING:
For almost all topics (properties, algorithms, etc.),

g > 1 is exponentially more difficult than g = 1.

Representing Jac(C)

1. Mumford: An element (= a divisor) of Jac(C) is

D = 〈u(z), v(z)〉, deg(u) ≤ g, deg(v) < deg(u),

defined by (if Pi = (xi, yi)),

u(z) =

g∏
i=1

(z− xi), and v(xi) = yi, ∀i.

Rem. If D = 〈u(z), v(z)〉, then −D = 〈u(z),−v(z)〉.

Group law: Cantor’s algorithm (or special formulae for fixed g
à la Spallek, Harley, Nagao).

2. Theta representations: Chudnovsky& Chudnovsky, Gaudry,
. . . , Robert, Cosset.

Cardinality

K = Fq = Fpn ; Nr = #C(Kr) where [Kr : K] = r:

Z(T) = exp

∑
r≥1

Nr
Tr

r

 .

Ex. P1(Fqr) = {(x0, x1) 6= (0, 0) ∈ F2
qr}/ ∼.

#P1(Fqr) = 1 + qr

Z(T) =
1

(1− T)(1− qT)
.

Weil’s theorem

Thm. (Weil) Z(T) ∈ Q[T]

Z(T) =
L(T)

(1− T)(1− qT)

(i) L(T) = 1 + a1T + · · ·+ qgT2g, ai ∈ Z;
(ii) a2g−i = qg−iai for 0 ≤ i ≤ g;
(iii) if L(T) =

∏
(1− αiT), then αiαg+i = q and |αi| =

√
q.

Thm. #Jac(C) = L(1).

Coro. |#C − (q + 1)| ≤ 2g
√

q;
(
√

q− 1)2g ≤ #Jac(C) ≤ (
√

q + 1)2g.

`-torsion

Def. Jac[n] = {P ∈ Jac(K), [n]P = OJ}.

Thm. If (n, char(K)) = 1, Jac[n] ∼ (Z/nZ)2g; Jac[pr] = (Z/pZr)k,
0 ≤ k ≤ g.

Rem. In general k = g (ordinary curves); when g = 1, the case
k = 0 corresponds to supersingular curves.

Coro. Jac(C)/K is at most C1 × C2 × · · · × C2g.

For g = 1, this means E is cyclic (very often) or C1 × C2
(rarely).

Division polynomials for elliptic curves

Take E : y2 = x3 + Ax + B:

[n](X,Y) =

(
φn(X,Y)

ψn(X,Y)2 ,
ωn(X,Y)

ψn(X,Y)3

)

φn = Xψ2
n − ψn+1ψn−1

4Yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

φn, ψ2n+1, ψ2n/(2Y), ω2n+1/Y, ω2n ∈ Z[A,B,X]

Rem. When g > 1, one can define analogous division
polynomials – as a matter of fact, division ideals – (cf. Cantor).

fn(X) =

{
ψn(X,Y) for n odd
ψn(X,Y)/(2Y) for n even

f−1 = −1, f0 = 0, f1 = 1, f2 = 1

f3(X,Y) = 3X4 + 6AX2 + 12BX − A2

f4(X,Y) = X6 + 5AX4 + 20BX3 − 5A2X2

−4ABX − 8B2 − A3

f2n = fn(fn+2f 2
n−1 − fn−2f 2

n+1)

f2n+1 =

{
fn+2f 3

n − f 3
n+1fn−1(16Y4) if n is odd

(16Y4)fn+2f 3
n − f 3

n+1fn−1 otherwise.

deg(fn(X)) =

{
(n2 − 1)/2 if n is odd
(n2 − 4)/2 otherwise.

Thm. P = (x, y) point of order ` in E(K)
⇐⇒ [2]P = OE or f`(x) = 0.

II. Particular curves

A) Supersingular curves

Elliptic curves: E s.t. #E = q + 1− c, p | c (not every c, all is
known).
For instance: when n = 2m + 1, q = 2n

E cn

Y2 + Y = X3 0
Y2 + Y = X3 + X −(2/n)

√
2q

Y2 + Y = X3 + X + 1 (2/n)
√

2q

(See A. Menezes and S. Vanstone, Utilitas Math.,
38:135–153, 1990)
Pb: subject to the MOV reduction (see also Frey, Rück).

g > 1: can be generalized, but reductions still apply (see also
Galbraith for security evaluation).

B) CM curves

g = 1:
Thm. (Katre) If p = x2 + 4y2 with x ≡ 1 mod 4 and a 6≡ 0 mod p,
then E : Y2 = X3 + aX has cardinality

p + 1−

{
2x if (a/p)4 = 1,
−2x if (a/p)4 = −1,
−4y otherwise with y s.t. 2y(a/p)4 = x.

There are 13 cases of curves defined over Q having such
properties; in general, 4p = A2 + DB2, #E = p + 1− A: basis
for primality proving with elliptic curves (ECPP, Atkin, M.).

g > 1:
Spallek, Weng (g = 2); Buhler-Koblitz; Duursma-Sakurai;
Chao, Matsuda, Nakamura, Tsujii; etc., etc.
⇒ M. Streng’s talks.

Pb: too much structure?

C) Misc

I Weil-Koblitz: Build curves over Fq for q small and use
Jac(C)/Fqk . ECDL might be a little easier.

I Weil descent: Start from ec’s to build hec’s (Smart et al.).
I Y2 = X2g+1 + aX, Y2 = X2g+1 + a (Jacobsthal sums:

Furukawa/Kawazoe/Takahashi 2003,
Haneda/Kawazoe/Takahashi 2005).

I Satoh: Y2 = X5 + uX3 + vX as covering of elliptic curves.

III. Generic methods

Input: a finite abelian group (G,+) with #G ≤ B.
Output: #G together with a proof (factors of #G + structure
with generators; for curves, use pairings).

1. Enumeration: O(#G) if one has a means of enumerating
G. . .

2. Use Lagrange’s theorem: for random x ∈ G, find ω =
order of x. Deduce from this the order of G (take care to small
orders, group structure with SNF, etc.; see Cohen). Relatively
easy when G is cyclic and the number of generators important.

Easy method: try increasing value of ω: O(ω) ≤ O(B), O(1)
space, deterministic.

Shanks’s baby steps/giant steps method

Write m = m0 + m1b for some b, 0 ≤ m0 < b, 0 ≤ m1 ≤ B/b and
write

[m]x = 0⇐⇒ [m1]([−b]x) = [m0]x.

1. baby steps: precompute B = {[m0]x, 0 ≤ m0 ≤ b};

2. giant steps: find all m1 s.t. [m1]([−b]x) = [m0]x for some m0.

Cost: b + B/b minimized with b =
√

B. Time and space are
O(
√

B) group operations, assuming membership testing is
O(1) (hashing), deterministic.

Rem. can be modified when A ≤ #G ≤ B, yielding a method
in O(

√
B− A).

Using kangaroos (Stein-Teske, Gaudry-Harley,
Matsuo-Chao-Tsujii): probabilistic method in O(

√
B− A) time

and O(1) space.

Application to elliptic curves

I Enumeration: find all x ∈ Fq s.t. f (x) is a square.
I Lagrange: [q + 1]P = [±c]P for 0 ≤ c ≤ 2

√
q.

Rem. If ord(P) is large enough, then

#{c ∈ [−2
√

q, 2
√

q], [q + 1− c]P = OE} = 1

and we can bypass the structure problem (Mestre).
I Kangaroos: idem.
I Shanks: we can do slightly better finding c and not ω.

Write c = n0 + n1W, 0 ≤ n0 < W, |n1| ≤ 2
√

q/W. Write

[q + 1− n0]P = [±n1][W]P, 0 ≤ n1 ≤ 2
√

q/W

Cost: W =
√

2
√

q, so O(2
√

2
√

q).

Application to hyperelliptic curves

L(1) = 1− s1 + · · ·+ (−1)gsg + (−1)g+1qsg−1 + · · · − qg−1s1 + qg,

|si| ≤
(

2g
i

)
qi/2.

A) Enumeration

g = 2: compute N1(C) and N2(C) and deduce
s1 = q + 1− N1(C), s2 = (s2

1 + N2(C)− (q2 + 1))/2.

g = 3: s3 = (s3
1 − 3s1s2 − N3 + q3 + 1)/3.

Prop. Method in O(qg).

B) Lagrange

Hasse-Weil gives
w = (

√
q + 1)2g − (

√
q− 1)2g = 4gq(2g−1)/2 + O(q(2g−3)/2) (for

fixed g, q→ +∞).

Prop. Method in O(q(2g−1)/2) (for fixed g).

Shanks/Kangaroos: O(q(2g−1)/4) (for fixed g).

Rem. Some improvements are possible (partial information –
truncating L(1), etc.).

IV. Schoof’s algorithm

The Frobenius endomorphism

Ordinary:
ϕ : K → K

x 7→ xq

Extension to C and Jac(C):

ϕ : C(K) → C(K)
(X,Y) 7→ (Xq,Yq)

Fundamental thm. The minimal polynomial χ(T) of ϕ is the
reciprocal of L(T). Moreover #Jac(C)/Fq = χ(1).

Consequence: computing #Jac(C)/Fq boils down to
computing χ(T).

g = 1: for E with χ(T) = T2 − cT + q, |c| ≤ 2
√

q.
ϕ restricted to E[`] satisfies:

ϕ2 − cϕ+ q ≡ 0 mod `

so we can find c` ≡ c mod ` such that

(Xq2
,Yq2

)⊕ [q](X,Y) = [c`](Xq,Yq)

in K[X,Y]/(E, f`(X)) and use CRT once
∏
` > 4

√
q. Yields a

O(log8 q) deterministic algorithm.

Pb. deg(f`) = O(`2).

g > 1: general algorithm by Pila (1990), but impossible to
implement; Kampkötter (1991) for any hyperelliptic, with
precise equations for g = 2 (uses Gröbner bases). More
tomorrow!

ECC2011 summer school
September 15–16, 2011

Point counting algorithms:
II. elaborate methods

F. Morain

Plan

I. What we saw yesterday.

II. Isogenies and point counting: Elkies, Atkin, Couveignes,
Lercier.

III. Satoh’s algorithm.

IV. Generalization to genus 2.

V. Generating cryptographically strong elliptic curves.

I. What we saw yesterday

ϕ : C(K) → C(K)
(X,Y) 7→ (Xq,Yq)

Fundamental thm. The minimal polynomial χ(T) of ϕ is the
reciprocal of L(T). Moreover #Jac(C)/Fq = χ(1).

Consequence: computing #Jac(C)/Fq boils down to
computing χ(T).
g = 1: for E with χ(T) = T2 − cT + q, |c| ≤ 2

√
q.

ϕ restricted to E[`] satisfies:

ϕ2 − cϕ+ q ≡ 0 mod `

so we can find c` ≡ c mod ` such that

(Xq2
,Yq2

)⊕ [q](X,Y) = [c`](Xq,Yq)

in K[X,Y]/(E, f`(X)) and use CRT once
∏
` > 4

√
q. Yields a

O(log8 q) deterministic algorithm.
Pb. deg(f`) = O(`2).

II. Isogenies and point counting

A) Elements of theory
Def. φ : E → E∗, φ(OE) = OE∗ ; induces a morphism of groups.

First examples
1.

[k](X,Y) =

(
Ak

ψ2
k
,

Bk

ψ3
k

)
2. [i](X,Y) = (−X, iY) on E : Y2 = X3 − X.
3. ϕ(X,Y) = (Xq,Yq), K = Fq.
Thm. (dual isogeny) There is a unique φ̂ : E∗ → E, φ̂ ◦ φ = [m],
m = degφ.

E -
φ

E∗

E
?

φ̂

@
@

@
@@R

[m]

Isogenies and subgroups

Thm. If F is a finite subgroup of E, then there exists φ and E∗

s.t.
φ : E → E∗ = E/F, ker(φ) = F.

Ex. E : y2 = x3 + ax2 + bx, F = 〈(0, 0)〉;

E∗ : Y2 = X3 − 2aX2 + (a2 − 4b)X,

φ : (x, y) 7→
(

y2

x2 ,
y(b− x2)

x2

)
.

More generally: Vélu’s formulas give

φ(X,Y) =

(
G(X)

H(X)2 ,
J(X,Y)

H(X)3

)
.

(case degφ odd.)

Application to point counting

Suppose F is a subgroup of order ` of E:

E -
I

E∗

E
?

Î

@
@

@
@@R

[`]

I(X,Y) =

(
G
H2 , . . .

)
, deg(H) = (`− 1)/2

ker(I) ⊂ E[`]⇒ H(X) | f`(X) in K[X].
Schoof’s algorithm on a degree O(`) polynomial.

Pb. When does such an F exist over K?

B) Atkin and Elkies

Consider ϕ : (X,Y) 7→ (Xq,Yq) and its restriction ϕ` to E[`]:

ϕ2
` − cϕ` + q = 0,

∆ = c2 − 4q.

If (∆/`) = +1, then over F`,

Mat(ϕ`) '
(
λ1 0
0 λ2

)
⇔ ∃F, ϕ(F) = F ⇔ F is a cyclic

subgroup of order `, defined over K.

Clon. If (∆/`) = +1, f` has a factor of degree (`− 1)/2.

Pb. How do we know that (∆/`) = +1?

Modular polynomials

Thm. ∃Φ`(X,Y) ∈ Z[X,Y] s.t. E and E∗ are `-isogenous over K
only if Φ`(j(E), j(E∗)) = 0.

This polynomial comes from the theory of elliptic curves over
C: for =(τ) > 0, Φ`(j(τ), j(τ/`)) = 0.

There are O(`2) integer coefficients of size O(`)⇒ Φ` will
occupy O(`3) bits. This yields a naive method for computing
Φ` using linear algebra.

Ex.
Φ2(X, Y) = X3 + X2

“
−Y2 + 1488 Y − 162000

”
+X

“
1488 Y2 + 40773375 Y + 8748000000

”
+Y3 − 162000 Y2 + 8748000000 Y − 157464000000000.

Over finite fields

Thm. E/Fq:

Φ`(X, j(E)) =

{
(1)(1)(s) · · · (s) if (∆/`) = +1,
(s) · · · (s) if (∆/`) = −1

and s is the order of λ1/λ2.

Clon. (∆/`) = +1 iff Φ`(X, j(E)) has two distinct roots over K.

Atkin’s 1986 idea: use the splitting of Φ` to deduce
information on t and combine it via a clever match and sort
algorithm (see also Joux/Lercier).

Elkies’s algorithm (circa 1989)

repeat
1. factor Φ`(X, j(E)) over K.
2. if type = (1)(1)(s) · · · (s):

2.1 build E∗;
2.2 build I;
2.3 find c mod `;

until
∏

` good ` > 4
√

q.

Thm. O(log4 q) operations over Fq, probabilistic.

Computing (E∗, I)

I use the theory of elliptic curves and lattices over C
(Weierstrass ℘ function); rational formulas for E∗;

I computing I takes O(M(`)) operations given E, E∗ and the
trace of the polynomial (Bostan/M./Salvy/Schost,
Lercier/Sirvent);

I in small characteristic, this is more difficult: see
CouveignesI+II, DeFeo; Lercier;

I Cf. D. Robert’s talks for more.

Rem. Isogenies no longer used for computing cardinalities for
p small, but used for computing modular polynomials
(Bröker/Lauter/Sutherland), and enters some crypto primitives
(cryptosystems, discrete log attacks, isogeny walks, etc.).

Modular polynomials

Historically: precompute huge tables of Φ` over Z and
reduce them on the fly. Convenient for crypto targets.

I Find families of “smaller” modular polynomials (Weber
functions, Atkin’s laundry method – theta functions, Müller
with Hecke operators, etc.); e.g.,
Φ2[j1/3] = U3 − V2U2 + 495 VU + V3 − 54000.

I Computing Φ` given f :
I series expansions to recover coefficients;
I floating point computations on huge complex numbers;

best method is Enge, Dupont using
evaluation/interpolation for Õ(`3) operations;

I alternative p-adic approach by Bröker.
I Vercauteren: special case of p = 2 enables many tricks

that reduce the computations.

Modern times: directly compute Φ` over the ring we’re
interested in. Best algorithm uses CRT and isogeny
volcanoes. (Bröker/Lauter/Sutherland) in time Õ(`3).

Point counting records
FM; then AEnge/PGaudry/FM (first home made; NTL)

what 500dd 1000dd 1500dd 2005dd 2500dd
when 1995 2005(!)

Xp 6h 134h 35d 133d 224d
Total 10h 180h 77d 195d 404d

A. Sutherland (07/2010): p = 16219299585× 216612 − 1
(5000dd),

Approximate timings on AMD Phenom II 3.0 GHz cores:
Phi_n(X,j(E)) mod p 32 CPU days
X^p mod Phi_n(X,j(E)) 995 CPU days
Elkies kernel polynomial h(X) 3 CPU days
Y^p mod h and derive X^p mod h 326 CPU days
eigenvalue using BSGS 22 CPU days

1378 CPU days

Every day life (crypto)

I Optimal parameters for crypto size available since 1995
(Lercier+M.).

I well understood algo + implementation (see green books
for convenience).

I Implementations available in MAGMA, pari, . . .

I An exercise in NTL, or Sage. Ditto for modular
polynomials, for which tables exist.

III. Satoh’s algorithm

Def. Zp ring of p-adic integers (x1, x2, . . . , xn, . . .) s.t.
xn ∈ Z/pnZ and xn+1 ≡ xn mod pn. Denote by π : Zp → Fp

sending x to x1.
Def. Let q = pr and f (t) ∈ Zp[t] s.t. π(f) is irreducible in Fp[t].
Then Zq = Zp[t]/(f (t)).
An element of Zq is A = ar−1tr−1 + · · ·+ a0 with ai ∈ Zp; Zq

contains Zp as a subring.

π(A) =
∑

i

π(ai)ti.

Prop. Let σ be the little Frobenius sending x in Fq to xp. There
is a canonical way to lift σ to Σ : Zq → Zq.

Extend σ to points σ(x, y) = (σ(x), σ(y)) and to curves:
σ(E) = [σ(ai)], so that if P ∈ E(K), then σ(P) ∈ σ(E)(K).

Thm (Lubin-Serre-Tate) Let E/Fq with j = j(E) ∈ Fq − Fp2 .
There is a unique J in Zq s.t.

Φp(J ,Σ(J)) = 0,

π(J) = j; J is the invariant of the canonical lift E of E and
End(E) = End(E).

Isogeny cycles:

E0
Σr−1−→Er−1

Σr−2−→· · · Σ1−→ E1
Σ0−→E0

↓ π ↓ π ↓ π
E0

σr−1−→Er−1
σr−2−→· · · σ1−→ E1

σ0−→E0

Prop. ϕ = σ0 ◦ σ1 ◦ · · · ◦ σr−1, F = Σ0 ◦ Σ1 ◦ · · · ◦ Σr−1.
Thm. Tr(ϕ) = Tr(F).

Computing Tr(F) (1/2)

Use the dual of Frobenius to get another isogeny cycle
amenable to computations:

E0
Σ̂0−→ E1

Σ̂1−→· · · Σ̂r−2−→Er−1
Σ̂r−1−→E0

↓ π ↓ π ↓ π
E0

σ̂0−→ E1
σ̂1−→· · · σ̂r−2−→Er−1

σ̂r−1−→E0

Prop. ϕ̂ = σ̂r−1 ◦ σ̂r−2 ◦ · · · ◦ σ̂0 (idem for F̂) and also
Tr(F̂) = Tr(F) = Tr(ϕ).

Computing Tr(F) (2/2)

Let τ (resp. τi) denote the local parameter of E (resp. Ei).

F(τ) =
∑
k≥1

ckτ
k

Prop. (Satoh) Tr(F) = c1 + q/c1.

c1 =
d−1∏
i=0

gi

where (Vélu’s formulas again)

Σ̂i(τi) = giτi + O(τ 2
i)

Satoh’s algorithm in brief

1. Compute the curves E0, E1, Er−1 and their invariants ji.
2. Lift all the ji’s simultaneously by a Newton iteration to get
Ji:

Θ((xi)) = (Φp(x0, x1),Φp(x1, x2), . . . ,Φp(xr−1, x0))

as
(xi)← (xi)− ((DΘ)−1Θ)((xi)).

3. Lift each Ei coefficient by coefficient.
4. Lift the p-torsion subgroup of Ei.
5. Compute the Σ̂i’s.
6. Compute the trace.

Thm. (Satoh-FGH) For fixed p, Satoh-FGH requires O(r3)
memory and O(r3+ε) bit-operations.

IV. The situation in genus 2

I Division polynomials: Cantor.

I Schoof/Pila:
I random curves: Gaudry/Harley (p ≈ 261), Gaudry/Schost

(p ≈ 282), Pitcher, Gaudry/Schost (2010): Õ((log p)7)
operations in Fp (record p = 2127 − 1: 1000 CPU hours).

I easy Real Multiplication: Gaudry/Kohel/Smith (2011) give
a Õ((log p)4) algorithm (record: p ≈ 2512; 128-bit takes 3
hours).

I Satoh’s algorithm: LST valid. Need modular equation.
Very fast for small p.

I Isogenies: Vélu’s formulas for maximally isotropic kernels
(Lubicz/Robert). See D. Robert, G. Bisson, R. Cosset
(AVIsogenies).

I Modular polynomials: not usable yet.

Modular polynomials when g = 2

I Gaudry + Schost: the algebraic alternative is generic
(Ξ`)

I total degree is d = (`4 − 1)/(`− 1);
I number of monomials is O(`12);
I can do ` = 3: 50k but a lot of computing time (weblink still

active);
I use its factorization patterns à la Atkin to speedup

cardinality computations.

I The classical modular approach:
I Poincaré→ Siegel (dim 2g);
I replace j by (j1, j2, j3)⇒ triplet of modular polynomials,

coefficients are rational fractions in ji’s;
I Dupont (experimental conjectures proven more recently

by Bröker+Lauter): stuck at ` = 2 with 26.8 Mbgz (just the
beginning of ` = 3); uses evaluation/interpolation again;
see Goren/Lauter.

V. Generating cryptographically strong curves

Fp with large p or F2n with n prime (Weil descent, see Menezes
& Qu); subgroups of large prime order.

I Supersingular curves: too much structure (?).
I CM curves: quite efficient for g = 1 or g = 2, but who

knows?
I Fixed curves: The NIST curves (?).
I Random curves:

I g = 1: use SEA for large p, Satoh for p = 2. Very efficient
when combined to the early-abort approach in Lercier’s
EUROCRYPT’97 article. Experiments conducted by FGH
combining SEA and Satoh show that it takes 5 min on
Alpha 750 MHz to build a good curve over F2233 .

I g = 2 begins to be efficient (in particular RM).
I g > 2: out of reach right now.

