ECC2011 summer school

September 15–16, 2011

Point counting algorithms on hyperelliptic curves

F. Morain

I. Introduction and motivations

Goal: build an effective group of cryptographic strength, resisting all known attacks.

Dream: find Nechaev groups G, in which the best attack will be $O(\sqrt{\#G})$ (existence?)

Best groups so far: hyperelliptic curves of genus g, with size $\approx q^g$ over some finite field \mathbb{F}_q . Typical size $q^g \approx 2^{160--200} \approx 10^{50--60}$.

- Miller, Koblitz (1986): elliptic curves are suggested for use, following the breakthrough of Lenstra in integer factorization (1985).
- Koblitz (1988): hyperelliptic cryptosystems.

In this series of talks

- ▶ Put the emphasis on elliptic curves, but take a more general view from time to time; g > 1 is the next case; sometimes, hec's yield info on ec's.
- ▶ Consider any base field, with some preference for large prime fields, or \mathbb{F}_{2^n} ; few places where it really matters.

General overview of the lectures

- I. Point counting algorithms: basic approaches.
- II. Point counting algorithms: elaborate methods.

Bibliography and links

- A course in algorithmic algebraic number theory (Cohen);
- The arithmetic of elliptic curves (Silverman);
- Elliptic curve public key cryptosystems (Menezes);
- Elliptic curves in cryptography (Blake, Seroussi, Smart);
- Advances in Elliptic curves in cryptography (Blake, Seroussi, Smart);
- Handbook of Elliptic and Hyperelliptic Curve Cryptography (Cohen, Frey);
- Algebraic aspects of cryptography (Koblitz, appendix on hec by Menezes, Wu, Zuccherato).

ECC2011 summer school

September 15, 2011

Point counting algorithms: l. basic approaches

F. Morain

Plan

- I. Elements of theory.
- II. Particular curves.
- III. Generic methods.
- IV. Schoof's algorithm.

I. Elements of theory

Let C be a plane smooth projective curve of genus g with equation F(X,Y)=0 with coefficients in \mathbb{K} , $\operatorname{char}(\mathbb{K})=p$.

Conic: (genus 0) $x^2 + y^2 = 1$.

Elliptic curve: (genus 1) $y^2 = x^3 + x + 1$.

Hyperelliptic curve: (genus g) $y^2 = x^{2g+1} + \cdots$ (or in some cases $y^2 = x^{2g+2} + \cdots$).

Rem. To simplify things, we assume that C is "at most" hyperelliptic (no C_{ab} or $X_0(N)$).

Def.
$$C(\mathbb{K}) = \{ P = (x, y) \in \mathbb{K}^2, F(x, y) = 0 \}.$$

Thm. When $g \le 1$, there is a group law on $C(\mathbb{K})$. When g > 1, there is a group law on the **jacobian** of the curve.

Elliptic curves

$$E: Y^{2} + a_{1}XY + a_{3}Y = X^{3} + a_{2}X^{2} + a_{4}X + a_{6}$$

$$b_{2} = a_{1}^{2} + 4a_{2}, b_{4} = 2a_{4} + a_{1}a_{3}, b_{6} = a_{3}^{2} + 4a_{6},$$

$$b_{8} = a_{1}^{2}a_{6} + 4a_{2}a_{6} - a_{1}a_{3}a_{4} + a_{2}a_{3}^{2} - a_{4}^{2},$$

$$c_{4} = b_{2}^{2} - 24b_{4}, c_{6} = b_{2}^{3} + 36b_{2}b_{4} - 216b_{6},$$

$$\Delta = -b_{2}^{2}b_{8} - 8b_{4}^{3} - 27b_{6}^{2} + 9b_{2}b_{4}b_{6} \neq 0$$

$$j(E) = \frac{c_{4}^{3}}{\Delta}$$

When p=2: $Y^2+XY=X^3+a_2X^2+a_6$, $j=1/a_6$. When p>3: $Y^2=X^3+AX+B$, $\Delta=-16(4A^3+27B^2)$. $E(\mathbb{K})$, tangent-and-chord (\oplus, O_E) , multiplication by n noted [n]P.

Group law

$$P_3 = P_1 \oplus P_2$$
$$[k]P = \underbrace{P \oplus \cdots \oplus P}_{k \text{ times}}$$

Hyperelliptic curves

$$y^2 + h(x)y = f(x) = x^{2g+1} + \cdots$$

IMPORTANT WARNING:

For almost all topics (properties, algorithms, etc.), g > 1 is exponentially more difficult than g = 1.

Representing Jac(C)

1. Mumford: An element (= a divisor) of Jac(C) is

$$D = \langle u(z), v(z) \rangle, \deg(u) \leq g, \deg(v) < \deg(u),$$

defined by (if $P_i = (x_i, y_i)$),

$$u(z) = \prod_{i=1}^{g} (z - x_i)$$
, and $v(x_i) = y_i$, $\forall i$.

Rem. If $D = \langle u(z), v(z) \rangle$, then $-D = \langle u(z), -v(z) \rangle$.

Group law: Cantor's algorithm (or special formulae for fixed g à la Spallek, Harley, Nagao).

2. Theta representations: Chudnovsky& Chudnovsky, Gaudry, ..., Robert, Cosset.

Cardinality

$$\mathbb{K} = \mathbb{F}_q = \mathbb{F}_{p^n}$$
; $N_r = \#C(\mathbb{K}_r)$ where $[\mathbb{K}_r : \mathbb{K}] = r$:

$$Z(T) = \exp\left(\sum_{r>1} N_r \frac{T^r}{r}\right).$$

Ex.
$$\mathbb{P}^1(\mathbb{F}_{q^r}) = \{(x_0, x_1) \neq (0, 0) \in \mathbb{F}_{q^r}^2\} / \sim.$$

$$\#\mathbb{P}^1(\mathbb{F}_{q^r}) = 1 + q^r$$

$$Z(T) = \frac{1}{(1-T)(1-qT)}.$$

Weil's theorem

Thm. (Weil) $Z(T) \in \mathbb{Q}[T]$

$$Z(T) = \frac{L(T)}{(1-T)(1-qT)}$$

(i)
$$L(T) = 1 + a_1T + \cdots + q^gT^{2g}, a_i \in \mathbb{Z};$$

(ii)
$$a_{2g-i} = q^{g-i}a_i$$
 for $0 \le i \le g$;

(iii) if
$$L(T) = \prod (1 - \alpha_i T)$$
, then $\alpha_i \alpha_{g+i} = q$ and $|\alpha_i| = \sqrt{q}$.

Thm. # Jac(C) = L(1).

Coro.
$$|\#C - (q+1)| \le 2g\sqrt{q}$$
; $(\sqrt{q}-1)^{2g} \le \#\text{Jac}(C) \le (\sqrt{q}+1)^{2g}$.

ℓ-torsion

Def. $\operatorname{Jac}[n] = \{ P \in \operatorname{Jac}(\overline{\mathbb{K}}), [n]P = O_J \}.$

Thm. If $(n, \operatorname{char}(\mathbb{K})) = 1$, $\operatorname{Jac}[n] \sim (\mathbb{Z}/n\mathbb{Z})^{2g}$; $\operatorname{Jac}[p^r] = (\mathbb{Z}/p\mathbb{Z}^r)^k$, $0 \le k \le g$.

Rem. In general k = g (ordinary curves); when g = 1, the case k = 0 corresponds to **supersingular** curves.

Coro. Jac(C)/ \mathbb{K} is at most $C_1 \times C_2 \times \cdots \times C_{2g}$.

For g = 1, this means E is cyclic (very often) or $C_1 \times C_2$ (rarely).

Division polynomials for elliptic curves

Take
$$E: y^2 = x^3 + Ax + B$$
:

$$[n](X,Y) = \left(\frac{\phi_n(X,Y)}{\psi_n(X,Y)^2}, \frac{\omega_n(X,Y)}{\psi_n(X,Y)^3}\right)$$
$$\phi_n = X\psi_n^2 - \psi_{n+1}\psi_{n-1}$$
$$4Y\omega_n = \psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2$$
$$\phi_n, \psi_{2n+1}, \psi_{2n}/(2Y), \omega_{2n+1}/Y, \omega_{2n} \in \mathbb{Z}[A,B,X]$$

Rem. When g > 1, one can define analogous division polynomials – as a matter of fact, division ideals – (cf. Cantor).

$$f_n(X) = \begin{cases} \psi_n(X, Y) & \text{for } n \text{ odd} \\ \psi_n(X, Y)/(2Y) & \text{for } n \text{ even} \end{cases}$$

$$f_{-1} = -1, \quad f_0 = 0, \quad f_1 = 1, \quad f_2 = 1$$

$$f_{-1} = -1$$
, $f_0 = 0$, $f_1 = 1$, $f_2 = 1$
 $f_3(X, Y) = 3X^4 + 6AX^2 + 12BX - A^2$
 $f_4(X, Y) = X^6 + 5AX^4 + 20BX^3 - 5A^2X^2$
 $-4ABX - 8B^2 - A^3$

 $f_{2n} = f_n(f_{n+2}f_{n-1}^2 - f_{n-2}f_{n+1}^2)$

$$f_{2n+1} = \begin{cases} f_{n+2}f_n^3 - f_{n+1}^3 f_{n-1}(16Y^4) & \text{if } n \text{ is odd} \\ (16Y^4)f_{n+2}f_n^3 - f_{n+1}^3 f_{n-1} & \text{otherwise.} \end{cases}$$

$$\deg(f_n(X)) = \begin{cases} (n^2 - 1)/2 & \text{if } n \text{ is odd} \\ (n^2 - 4)/2 & \text{otherwise.} \end{cases}$$

Thm.
$$P = (x, y)$$
 point of order ℓ in $E(\overline{\mathbb{K}})$

Thm.
$$P = (x, y)$$
 point of order ℓ in $E(\mathbb{R})$ \iff $[2]P = O_E$ or $f_{\ell}(x) = 0$.

II. Particular curves

A) Supersingular curves

Elliptic curves: E s.t. #E = q + 1 - c, $p \mid c$ (not every c, all is known).

For instance: when n = 2m + 1, $q = 2^n$

E	c_n
$Y^2 + Y = X^3$	0
$Y^2 + Y = X^3 + X$	$-(2/n)\sqrt{2q}$
$Y^2 + Y = X^3 + X + 1$	$(2/n)\sqrt{2q}$

(See A. Menezes and S. Vanstone, *Utilitas Math.*, 38:135–153, 1990)

Pb: subject to the MOV reduction (see also Frey, Rück).

g > 1: can be generalized, but reductions still apply (see also Galbraith for security evaluation).

B) CM curves

g=1:

Thm. (Katre) If $p = x^2 + 4y^2$ with $x \equiv 1 \mod 4$ and $a \not\equiv 0 \mod p$, then $E: Y^2 = X^3 + aX$ has cardinality

$$p+1-\left\{\begin{array}{ll} 2x & \text{if } (a/p)_4=1,\\ -2x & \text{if } (a/p)_4=-1,\\ -4y & \text{otherwise with } y \text{ s.t. } 2y(a/p)_4=x. \end{array}\right.$$

There are 13 cases of curves defined over \mathbb{Q} having such properties; in general, $4p=A^2+DB^2$, #E=p+1-A: basis for primality proving with elliptic curves (ECPP, Atkin, M.).

g > 1:

Spallek, Weng (g=2); Buhler-Koblitz; Duursma-Sakurai; Chao, Matsuda, Nakamura, Tsujii; etc., etc.

⇒ M. Streng's talks.

Pb: too much structure?

C) Misc

- ▶ Weil-Koblitz: Build curves over \mathbb{F}_q for q small and use $\operatorname{Jac}(C)/\mathbb{F}_{q^k}$. ECDL might be a little easier.
- ▶ Weil descent: Start from ec's to build hec's (Smart et al.).
- ▶ $Y^2 = X^{2g+1} + aX$, $Y^2 = X^{2g+1} + a$ (Jacobsthal sums: Furukawa/Kawazoe/Takahashi 2003, Haneda/Kawazoe/Takahashi 2005).
- ▶ Satoh: $Y^2 = X^5 + uX^3 + vX$ as covering of elliptic curves.

III. Generic methods

Input: a finite abelian group (G, +) with $\#G \le B$. **Output:** #G together with a proof (factors of #G + structure with generators; for curves, use pairings).

- **1. Enumeration:** O(#G) if one has a means of enumerating G...
- **2. Use Lagrange's theorem:** for random $x \in G$, find $\omega =$ order of x. Deduce from this the order of G (take care to small orders, group structure with SNF, etc.; see Cohen). Relatively easy when G is cyclic and the number of generators important.

Easy method: try increasing value of ω : $O(\omega) \leq O(B)$, O(1) space, deterministic.

Shanks's baby steps/giant steps method

Write $m = m_0 + m_1 b$ for some $b, 0 \le m_0 < b, 0 \le m_1 \le B/b$ and write

$$[m]x = 0 \Longleftrightarrow [m_1]([-b]x) = [m_0]x.$$

- 1. **baby steps**: precompute $\mathcal{B} = \{[m_0]x, 0 \le m_0 \le b\};$
- 2. **giant steps**: find all m_1 s.t. $[m_1]([-b]x) = [m_0]x$ for some m_0 .

Cost: b + B/b minimized with $b = \sqrt{B}$. Time and space are $O(\sqrt{B})$ group operations, assuming membership testing is O(1) (hashing), deterministic.

Rem. can be modified when $A \le \#G \le B$, yielding a method in $O(\sqrt{B-A})$.

Using kangaroos (Stein-Teske, Gaudry-Harley, Matsuo-Chao-Tsujii): probabilistic method in $O(\sqrt{B-A})$ time and O(1) space.

Application to elliptic curves

- ▶ Enumeration: find all $x \in \mathbb{F}_q$ s.t. f(x) is a square.
- ▶ Lagrange: $[q+1]P = [\pm c]P$ for $0 \le c \le 2\sqrt{q}$. **Rem.** If ord(P) is large enough, then

$$\#\{c \in [-2\sqrt{q}, 2\sqrt{q}], [q+1-c]P = O_E\} = 1$$

and we can bypass the structure problem (Mestre).

- ► Kangaroos: idem.
- Shanks: we can do slightly better finding c and not ω . Write $c = n_0 + n_1 W$, $0 \le n_0 < W$, $|n_1| \le 2\sqrt{q}/W$. Write

$$[q+1-n_0]P = [\pm n_1][W]P, 0 \le n_1 \le 2\sqrt{q}/W$$

Cost: $W = \sqrt{2\sqrt{q}}$, so $O(2\sqrt{2\sqrt{q}})$.

Application to hyperelliptic curves

$$L(1) = 1 - s_1 + \dots + (-1)^g s_g + (-1)^{g+1} q s_{g-1} + \dots - q^{g-1} s_1 + q^g,$$
$$|s_i| \le {2g \choose i} q^{i/2}.$$

A) Enumeration

$$g = 2$$
: compute $N_1(C)$ and $N_2(C)$ and deduce $s_1 = q + 1 - N_1(C)$, $s_2 = (s_1^2 + N_2(C) - (q^2 + 1))/2$. $g = 3$: $s_3 = (s_1^3 - 3s_1s_2 - N_3 + q^3 + 1)/3$.

Prop. Method in $O(q^g)$.

B) Lagrange

Hasse-Weil gives $w = (\sqrt{q}+1)^{2g} - (\sqrt{q}-1)^{2g} = 4gq^{(2g-1)/2} + O(q^{(2g-3)/2})$ (for fixed $g, q \to +\infty$).

Prop. Method in $O(q^{(2g-1)/2})$ (for fixed g).

Shanks/Kangaroos: $O(q^{(2g-1)/4})$ (for fixed g).

Rem. Some improvements are possible (partial information – truncating L(1), etc.).

IV. Schoof's algorithm

The Frobenius endomorphism

Ordinary:

$$\varphi: \ \overline{\mathbb{K}} \to \ \overline{\mathbb{K}}$$
$$x \mapsto x^q$$

Extension to C and Jac(C):

$$arphi: C(\overline{\mathbb{K}}) o C(\overline{\mathbb{K}}) \ (X,Y) \mapsto (X^q,Y^q)$$

Fundamental thm. The minimal polynomial $\chi(T)$ of φ is the reciprocal of L(T). Moreover $\#\mathrm{Jac}(C)/\mathbb{F}_q=\chi(1)$.

Consequence: computing $\#\operatorname{Jac}(C)/\mathbb{F}_q$ boils down to computing $\chi(T)$.

g=1: for E with $\chi(T)=T^2-cT+q$, $|c|\leq 2\sqrt{q}$. φ restricted to $E[\ell]$ satisfies:

$$\varphi^2 - c\varphi + q \equiv 0 \bmod \ell$$

so we can find $c_{\ell} \equiv c \mod \ell$ such that

$$(X^{q^2},Y^{q^2})\oplus [q](X,Y)=[c_\ell](X^q,Y^q)$$

in $\mathbb{K}[X,Y]/(E,f_{\ell}(X))$ and use CRT once $\prod \ell > 4\sqrt{q}$. Yields a $O(\log^8 q)$ deterministic algorithm.

Pb.
$$\deg(f_{\ell}) = O(\ell^2)$$
.

g > 1: general algorithm by Pila (1990), but impossible to implement; Kampkötter (1991) for any hyperelliptic, with precise equations for g = 2 (uses Gröbner bases). More tomorrow!

ECC2011 summer school

September 15-16, 2011

Point counting algorithms: II. elaborate methods

F. Morain

Plan

- I. What we saw yesterday.
- II. Isogenies and point counting: Elkies, Atkin, Couveignes, Lercier.
- III. Satoh's algorithm.
- IV. Generalization to genus 2.
- V. Generating cryptographically strong elliptic curves.

I. What we saw yesterday

$$\varphi: C(\overline{\mathbb{K}}) \to C(\overline{\mathbb{K}})$$

$$(X,Y) \mapsto (X^q,Y^q)$$

Fundamental thm. The minimal polynomial $\chi(T)$ of φ is the reciprocal of L(T). Moreover $\#\operatorname{Jac}(C)/\mathbb{F}_q = \chi(1)$.

Consequence: computing $\#\operatorname{Jac}(C)/\mathbb{F}_q$ boils down to computing $\chi(T)$.

g = 1: for E with $\chi(T) = T^2 - cT + q$, $|c| \le 2\sqrt{q}$. φ restricted to $E[\ell]$ satisfies:

$$\varphi^2 - c\varphi + q \equiv 0 \bmod \ell$$

so we can find $c_{\ell} \equiv c \mod \ell$ such that

$$(X^{q^2}, Y^{q^2}) \oplus [q](X, Y) = [c_{\ell}](X^q, Y^q)$$

in $\mathbb{K}[X,Y]/(E,f_{\ell}(X))$ and use CRT once $\prod \ell > 4\sqrt{q}$. Yields a $O(\log^8 q)$ deterministic algorithm.

Pb. $\deg(f_{\ell}) = O(\ell^2)$.

II. Isogenies and point counting

A) Elements of theory

Def. $\phi: E \to E^*, \ \phi(O_E) = O_{E^*};$ induces a morphism of groups.

First examples

1.

$$[k](X,Y) = \left(\frac{A_k}{\psi_k^2}, \frac{B_k}{\psi_k^3}\right)$$

- 2. [i](X,Y) = (-X,iY) on $E: Y^2 = X^3 X$.
- 3. $\varphi(X,Y)=(X^q,Y^q), \mathbb{K}=\mathbb{F}_q.$

Thm. (dual isogeny) There is a unique $\hat{\phi}: E^* \to E, \, \hat{\phi} \circ \phi = [m], m = \deg \phi$.

Isogenies and subgroups

Thm. If F is a finite subgroup of E, then there exists ϕ and E^* s.t.

$$\phi: E \to E^* = E/F$$
, $\ker(\phi) = F$.

Ex.
$$E: y^2 = x^3 + ax^2 + bx, F = \langle (0,0) \rangle;$$

$$E^*: Y^2 = X^3 - 2aX^2 + (a^2 - 4b)X,$$

$$\phi:(x,y)\mapsto\left(\frac{y^2}{x^2},\frac{y(b-x^2)}{x^2}\right).$$

More generally: Vélu's formulas give

$$\phi(X,Y) = \left(\frac{G(X)}{H(X)^2}, \frac{J(X,Y)}{H(X)^3}\right).$$

(case $deg\phi$ odd.)

Application to point counting

Suppose F is a subgroup of order ℓ of E:

$$E \xrightarrow{I} E^*$$

$$\downarrow \hat{I}$$

$$E$$

$$I(X,Y) = \left(\frac{G}{H^2}, \dots\right), \deg(H) = (\ell-1)/2$$

 $\ker(I) \subset E[\ell] \Rightarrow H(X) \mid f_{\ell}(X) \text{ in } \mathbb{K}[X].$ Schoof's algorithm on a degree $O(\ell)$ polynomial.

Pb. When does such an F exist over \mathbb{K} ?

B) Atkin and Elkies

Consider $\varphi: (X,Y) \mapsto (X^q,Y^q)$ and its restriction φ_ℓ to $E[\ell]$:

$$\varphi_{\ell}^2 - c\varphi_{\ell} + q = 0,$$

$$\Delta = c^2 - 4q.$$

If $(\Delta/\ell) = +1$, then over \mathbb{F}_{ℓ} ,

 $\operatorname{Mat}(\varphi_\ell) \simeq \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) \Leftrightarrow \exists F, \varphi(F) = F \Leftrightarrow F \text{ is a cyclic subgroup of order } \ell, \text{ defined over } \mathbb{K}.$

Clon. If $(\Delta/\ell) = +1$, f_{ℓ} has a factor of degree $(\ell - 1)/2$.

Pb. How do we know that $(\Delta/\ell) = +1$?

Modular polynomials

Thm. $\exists \Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ s.t. E and E^* are ℓ -isogenous over \mathbb{K} only if $\Phi_{\ell}(j(E),j(E^*))=0$.

This polynomial comes from the theory of elliptic curves over \mathbb{C} : for $\Im(\tau) > 0$, $\Phi_{\ell}(j(\tau), j(\tau/\ell)) = 0$.

There are $O(\ell^2)$ integer coefficients of size $O(\ell) \Rightarrow \Phi_\ell$ will occupy $O(\ell^3)$ bits. This yields a naive method for computing Φ_ℓ using linear algebra.

Ex.

$$\Phi_2(X, Y) = X^3 + X^2 \left(-Y^2 + 1488 Y - 162000 \right)$$

$$+ X \left(1488 Y^2 + 40773375 Y + 8748000000 \right)$$

$$+ Y^3 - 162000 Y^2 + 8748000000 Y - 1574640000000000.$$

Over finite fields

Thm. E/\mathbb{F}_q :

$$\Phi_{\ell}(X,j(E)) = \begin{cases} (1)(1)(s)\cdots(s) & \text{if } (\Delta/\ell) = +1, \\ (s)\cdots(s) & \text{if } (\Delta/\ell) = -1 \end{cases}$$

and s is the order of λ_1/λ_2 .

Clon. $(\Delta/\ell) = +1$ iff $\Phi_{\ell}(X, j(E))$ has two distinct roots over \mathbb{K} .

Atkin's 1986 idea: use the splitting of Φ_{ℓ} to deduce information on t and combine it via a clever match and sort algorithm (see also Joux/Lercier).

Elkies's algorithm (circa 1989)

```
repeat
```

```
1. factor \Phi_{\ell}(X, j(E)) over \mathbb{K}.

2. if type = (1)(1)(s)\cdots(s):

2.1 build E^*;

2.2 build I;

2.3 find c \mod \ell;

until \prod_{\ell \mod \ell} 0 > 4\sqrt{q}.
```

Thm. $O(\log^4 q)$ operations over \mathbb{F}_q , probabilistic.

Computing (E^*, I)

- use the theory of elliptic curves and lattices over \mathbb{C} (Weierstrass \wp function); rational formulas for E^* ;
- ▶ computing I takes $O(M(\ell))$ operations given E, E^* and the trace of the polynomial (Bostan/M./Salvy/Schost, Lercier/Sirvent);
- in small characteristic, this is more difficult: see CouveignesI+II, DeFeo; Lercier;
- ▶ Cf. D. Robert's talks for more.

Rem. Isogenies no longer used for computing cardinalities for p small, but used for computing modular polynomials (Bröker/Lauter/Sutherland), and enters some crypto primitives (cryptosystems, discrete log attacks, isogeny walks, etc.).

Modular polynomials

Historically: precompute huge tables of Φ_{ℓ} over \mathbb{Z} and reduce them on the fly. Convenient for crypto targets.

► Find families of "smaller" modular polynomials (Weber functions, Atkin's laundry method – theta functions, Müller with Hecke operators, etc.); e.g.,

$$\Phi_2[j^{1/3}] = U^3 - V^2U^2 + 495 VU + V^3 - 54000.$$

- ▶ Computing Φ_{ℓ} given f:
 - series expansions to recover coefficients;
 - floating point computations on huge complex numbers; best method is Enge, Dupont using evaluation/interpolation for $\tilde{O}(\ell^3)$ operations;
 - ▶ alternative *p*-adic approach by Bröker.
 - ightharpoonup Vercauteren: special case of p=2 enables many tricks that reduce the computations.

Modern times: directly compute Φ_{ℓ} over the ring we're interested in. Best algorithm uses CRT and isogeny volcanoes. (Bröker/Lauter/Sutherland) in time $\tilde{O}(\ell^3)$.

Point counting records

FM; then AEnge/PGaudry/FM (first home made; NTL)

what	500dd	1000dd	1500dd	2005dd	2500dd
when	1995			2005(!)	
X^p	6h	134h	35d	133d	224d
Total	10h	180h	77d	195d	404d

A. Sutherland (07/2010): $p = 16219299585 \times 2^{16612} - 1$ (5000dd),

Every day life (crypto)

- Optimal parameters for crypto size available since 1995 (Lercier+M.).
- well understood algo + implementation (see green books for convenience).
- ▶ Implementations available in MAGMA, pari, ...
- An exercise in NTL, or Sage. Ditto for modular polynomials, for which tables exist.

III. Satoh's algorithm

Def. \mathbb{Z}_p ring of p-adic integers $(x_1, x_2, \ldots, x_n, \ldots)$ s.t. $x_n \in \mathbb{Z}/p^n\mathbb{Z}$ and $x_{n+1} \equiv x_n \mod p^n$. Denote by $\pi : \mathbb{Z}_p \to \mathbb{F}_p$ sending x to x_1 .

Def. Let $q = p^r$ and $f(t) \in \mathbb{Z}_p[t]$ s.t. $\pi(f)$ is irreducible in $\mathbb{F}_p[t]$. Then $\mathbb{Z}_q = \mathbb{Z}_p[t]/(f(t))$.

An element of \mathbb{Z}_q is $A = a_{r-1}t^{r-1} + \cdots + a_0$ with $a_i \in \mathbb{Z}_p$; \mathbb{Z}_q contains \mathbb{Z}_p as a subring.

$$\pi(\mathcal{A}) = \sum_i \pi(a_i) t^i.$$

Prop. Let σ be the **little** Frobenius sending x in \mathbb{F}_q to x^p . There is a canonical way to lift σ to $\Sigma : \mathbb{Z}_q \to \mathbb{Z}_q$.

Extend σ to points $\sigma(x, y) = (\sigma(x), \sigma(y))$ and to curves: $\sigma(E) = [\sigma(a_i)]$, so that if $P \in E(\mathbb{K})$, then $\sigma(P) \in \sigma(E)(\mathbb{K})$.

Thm (Lubin-Serre-Tate) Let E/\mathbb{F}_q with $j=j(E)\in\mathbb{F}_q-\mathbb{F}_{p^2}$. There is a unique \mathcal{J} in \mathbb{Z}_q s.t.

$$\Phi_p(\mathcal{J}, \Sigma(\mathcal{J})) = 0,$$

 $\pi(\mathcal{J}) = j$; \mathcal{J} is the invariant of the **canonical lift** \mathcal{E} of E and $\operatorname{End}(\mathcal{E}) = \operatorname{End}(E)$.

Isogeny cycles:

$$\mathcal{E}_{0} \xrightarrow{\Sigma_{r-1}} \mathcal{E}_{r-1} \xrightarrow{\Sigma_{r-2}} \cdots \xrightarrow{\Sigma_{1}} \mathcal{E}_{1} \xrightarrow{\Sigma_{0}} \mathcal{E}_{0}$$

$$\downarrow \pi \qquad \downarrow \pi \qquad \downarrow \pi$$

$$E_{0} \xrightarrow{\sigma_{r-1}} E_{r-1} \xrightarrow{\sigma_{r-2}} \cdots \xrightarrow{\sigma_{1}} E_{1} \xrightarrow{\sigma_{0}} E_{0}$$

Prop. $\varphi = \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_{r-1}$, $\mathcal{F} = \Sigma_0 \circ \Sigma_1 \circ \cdots \circ \Sigma_{r-1}$. **Thm.** $\operatorname{Tr}(\varphi) = \operatorname{Tr}(\mathcal{F})$.

Computing $Tr(\mathcal{F})$ (1/2)

Use the dual of Frobenius to get another isogeny cycle amenable to computations:

$$\mathcal{E}_{0} \xrightarrow{\hat{\Sigma}_{0}} \mathcal{E}_{1} \xrightarrow{\hat{\Sigma}_{1}} \cdots \xrightarrow{\hat{\Sigma}_{r-2}} \mathcal{E}_{r-1} \xrightarrow{\hat{\Sigma}_{r-1}} \mathcal{E}_{0}
\downarrow \pi \qquad \downarrow \pi \qquad \downarrow \pi
E_{0} \xrightarrow{\hat{\sigma}_{0}} E_{1} \xrightarrow{\hat{\sigma}_{1}} \cdots \xrightarrow{\hat{\sigma}_{r-2}} E_{r-1} \xrightarrow{\hat{\sigma}_{r-1}} E_{0}$$

Prop. $\hat{\varphi} = \hat{\sigma}_{r-1} \circ \hat{\sigma}_{r-2} \circ \cdots \circ \hat{\sigma}_0$ (idem for $\hat{\mathcal{F}}$) and also $\operatorname{Tr}(\hat{\mathcal{F}}) = \operatorname{Tr}(\mathcal{F}) = \operatorname{Tr}(\varphi)$.

Computing $Tr(\mathcal{F})$ (2/2)

Let τ (resp. τ_i) denote the local parameter of \mathcal{E} (resp. \mathcal{E}_i).

$$\mathcal{F}(\tau) = \sum_{k \geq 1} c_k \tau^k$$

Prop. (Satoh) $Tr(\mathcal{F}) = c_1 + q/c_1$.

$$c_1 = \prod_{i=0}^{d-1} g_i$$

where (Vélu's formulas again)

$$\hat{\Sigma}_i(\tau_i) = g_i \tau_i + O(\tau_i^2)$$

Satoh's algorithm in brief

- 1. Compute the curves E_0 , E_1 , E_{r-1} and their invariants j_i .
- 2. Lift all the j_i 's simultaneously by a Newton iteration to get \mathcal{J}_i :

$$\Theta((x_i)) = (\Phi_p(x_0, x_1), \Phi_p(x_1, x_2), \dots, \Phi_p(x_{r-1}, x_0))$$

as

$$(x_i) \leftarrow (x_i) - ((D\Theta)^{-1}\Theta)((x_i)).$$

- 3. Lift each E_i coefficient by coefficient.
- **4**. Lift the *p*-torsion subgroup of E_i .
- 5. Compute the $\hat{\Sigma}_i$'s.
- 6. Compute the trace.

Thm. (Satoh-FGH) For fixed p, Satoh-FGH requires $O(r^3)$ memory and $O(r^{3+\varepsilon})$ bit-operations.

IV. The situation in genus 2

- Division polynomials: Cantor.
- ► Schoof/Pila:
 - random curves: Gaudry/Harley ($p \approx 2^{61}$), Gaudry/Schost ($p \approx 2^{82}$), Pitcher, Gaudry/Schost (2010): $\tilde{O}((\log p)^7)$ operations in \mathbb{F}_p (record $p = 2^{127} 1$: 1000 CPU hours).
 - easy Real Multiplication: Gaudry/Kohel/Smith (2011) give a $\tilde{O}((\log p)^4)$ algorithm (record: $p \approx 2^{512}$; 128-bit takes 3 hours).
- ► Satoh's algorithm: LST valid. Need modular equation. Very fast for small *p*.
- Isogenies: Vélu's formulas for maximally isotropic kernels (Lubicz/Robert). See D. Robert, G. Bisson, R. Cosset (AVIsogenies).
- Modular polynomials: not usable yet.

Modular polynomials when g = 2

- ► Gaudry + Schost: the algebraic alternative is generic (\(\frac{\pi}{\ell}\))
 - ▶ total degree is $d = (\ell^4 1)/(\ell 1)$;
 - number of monomials is $O(\ell^{12})$;
 - can do $\ell = 3$: 50k but a lot of computing time (weblink still active);
 - use its factorization patterns à la Atkin to speedup cardinality computations.

▶ The classical modular approach:

- Poincaré → Siegel (dim 2g);
- ► replace j by (j_1, j_2, j_3) ⇒ triplet of modular polynomials, coefficients are rational fractions in j_i 's;
- ▶ Dupont (experimental conjectures proven more recently by Bröker+Lauter): stuck at $\ell=2$ with 26.8 Mbgz (just the beginning of $\ell=3$); uses evaluation/interpolation again; see Goren/Lauter.

V. Generating cryptographically strong curves

 \mathbb{F}_p with large p or \mathbb{F}_{2^n} with n prime (Weil descent, see Menezes & Qu); subgroups of large prime order.

- ► Supersingular curves: too much structure (?).
- ► CM curves: quite efficient for g = 1 or g = 2, but who knows?
- ► Fixed curves: The NIST curves (?).
- Random curves:
 - ▶ g = 1: use SEA for large p, Satoh for p = 2. Very efficient when combined to the early-abort approach in Lercier's EUROCRYPT'97 article. Experiments conducted by FGH combining SEA and Satoh show that it takes 5 min on Alpha 750 MHz to build a good curve over $\mathbb{F}_{2^{233}}$.
 - g = 2 begins to be efficient (in particular RM).
 - g > 2: out of reach right now.